Advertisement

Biomechanics and the Growth Plate

  • G. Bollini
  • E. Viewegher
  • J. M. Guillaume
  • F. Launay
  • J. L. Jouve
Chapter

Abstract

The function of growth with which the physis is concerned is subject to many genetic, hormonal, metabolic, vascular, and mechanical factors.

Keywords

Growth Plate Club Foot Proliferative Zone Epiphyseal Plate Hypertrophic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delpech JM. De Porthomorphie par rapport à l’espèce humaine Thèse Paris 1928.Google Scholar
  2. 2.
    Blount WP, Clark GR. Control of bone growth by epiphyseal stapling. J Bone Joint Surg 1949;31:464–78.Google Scholar
  3. 3.
    Moen CT, Pelker RR. Biomechanical and histological correlations in growth plate failure. J Pediatr Orthop 1984;4:180–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Chung S, Batterman S, Brighton CT. Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg 1976;58A:94–103.Google Scholar
  5. 5.
    Gigante A, Specchia N, Nori S, Greco F. Distribution of elastic fiber types in the epiphyseal region. J Orthop Res 1996;14:810–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Amamilo SC, Bader DL, Houghton GR. The periosteum in growth plate failure. Clin Orthop 1985; 194: 293–305.PubMedGoogle Scholar
  7. 7.
    Bright RW, Burnstein AH, Elmore SM. Epiphyseal plate cartilage. J Bone Joint Surg 1974;56A:688–703.Google Scholar
  8. 8.
    Rudicel S, Pelker RR, Lee KE, Ogden JA, Panjabi MM. Shear fractures through the capital femoral physis of the skeletally immature rabbit. J Pediatr Orthop 1985;5: 27–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee KE, Pelker RR, Rudicel SA, Ogden JA, Panjabi M. Histologic pattern of capital femoral growth plate fracture in rabbit. J Pediatr Orthop 1985;5:32–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Williams JL, Vani JN, Eick JD, Petersen EC, Schmidt TL. Shear strength of the physis varies with anatomic location and is a function of modulus, inclination and thickness. J Orthop Res 1999;17:214–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Peltonen J, Aalto K, Karaharju E, Aletalo I, Gronblad M. Experimental epiphyseal separation by torsional force. J Pediatric Orthop 1984;4:546–9.Google Scholar
  12. 12.
    Bylander B, Selvik G, Hunsson LI, Aronson S. A roentgen stereophotogrammetric analysis of growth arrest by stapling. J Pediatr Orthop 1981;1:81–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Bylski-Austrow DI, Wall EJ, Rupert MP, Roy DR, Crawford AH. Growth plate forces in the adolescent human knee: A radiographic and mechanical study of epiphyseal staples. J Pediatr Orthop 2001;21(6):817–23.PubMedGoogle Scholar
  14. 14.
    Bonnel F, Peruchon E, Baldet P, Rabishong P. Comportement mécanique du cartilage de croissance. Rev Chir Orthop 1980;66:417–21.PubMedGoogle Scholar
  15. 15.
    Duke PJ, Montufar-Solis D. Exposure to altered gravity affects all stages of endochondral cartilage differentiation. Adv Space Res 1999;24(6):821–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Montufar-Solis D, Duke PJ, D’Aunno D. In vivo and in vitro studies of cartilage differentiation in altered gravities. Adv Space Res 1996;17(6–7):193–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Montufar-Solis D, Duke PJ. Gravitational changes affect tibial growth plate according to hert’s curve. Aviation Space and Environmental Medicine 1999;70(31):245–9.Google Scholar
  18. 18.
    Wronski TJ, Morey ER. Recovery of the rat skeleton from adverse effects of simulated weightlessness. Metab Bone Dis Relat Res 1983;4:347–52.PubMedGoogle Scholar
  19. 19.
    Sibonga JD, Zhang M, Evans GL, Westerlind KC, Carolina JM, Morey Holton E et al. Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 2000;27(4):535–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Hueter C. Anatomische Studien an den Extremitätengelenken Neugeborener und Erwachsener. Virchow Arch 1862;25:572.CrossRefGoogle Scholar
  21. 21.
    Pauwels F. Biomécanique de la hanche saine et pathologique. Springer Verlag, 1977.Google Scholar
  22. 22.
    Bonnel F, Peruchon E, Baldet P, Dimeglio A, Rabishong P. Effects of compression on growth plates in rabbit. Acta Orthop Scand 1983;54:730–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Alberty A, Peltonen J, Ritsila V. Effects of distraction and compression on proliferation of growth plate chondrocytes. A Study in Rabbits. Acta Orthop Scand 1993; 64(4):449–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Mankin KP, Zaleste DJ. Response of physeal cartilage to low level compression and tension in organ culture. J Pediatr Orthop 1998;18(2):145–8.PubMedGoogle Scholar
  25. 25.
    Arriola F, Forriol F, Canadell J. Histomorphometric study of growth plate subjected to different mechanical conditions (compression, tension and neutralization): An experimental study in lamb mechanical growth plate behavior. J Pediatr Orthop Part B 2001; 10(4):334–8.Google Scholar
  26. 26.
    Cohen B, Chorney GS, Phillips DP, Dick HM, Mow VC. Compressive stress-relaxation behavior of bovine growth plate may be described by the non-linear bipha-sic theory. J Orthop Res 1994;12(6):804–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Gray ML, Pizzanelli AM, Lee RC, Grodzinsky AJ, Swann DA. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim Biophys Acta 1989;991:415–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Greco F, Palma LD, Specchia N, Mannarini M. Growth plate cartilage metabolic response to mechanical stress. J Pediatr Orthop 1989;9(5):520–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Klein-Nulend J, Veldhuijzen JP, Van de Stadt RJ, Van Kampen GP, Kuijer R, Burger EH. Influence of inter mittent compressive force on proteoglycan content in calcifying growth plate cartilage in vitro. J Biol Chem 1987;262:15490–5.PubMedGoogle Scholar
  30. 30.
    Trueta J. The vascular contribution to osteogenesis. J Bone Joint Surg 1961;43B:800–13.Google Scholar
  31. 31.
    Collard-Meynaud P. Etudes des déformations angulaires expérimentales du radius chez l’agneau Thèse de science. Toulouse, 2001.Google Scholar
  32. 32.
    Kenwright J, Spriggins AJ, Cunningham JL. Response of the growth plate to distraction close to skeletal maturity, is fracture necessary? Clin Orthop 1990;250:61–72.PubMedGoogle Scholar
  33. 33.
    Pereira BP, Cavanagh SP, Pho RWH. Longitudinal growth rate following slow physeal distraction. The proximal tibial growth plate studied in rabbits. Acta Orthop Scand 1997;68(3):262–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Apte SS, Kenwright J. Physeal distraction and cell proliferation in the growth plate. J Bone Joint Surg Br 1994;76(5):837–43.PubMedGoogle Scholar
  35. 35.
    Alberty A, Peltonen J. Proliferation of the hypertrophic chondrocytes of the growth plate after physeal distraction. An experimental study in rabbits. Clin Orthop 1993;297:7–11.Google Scholar
  36. 36.
    Elmer EB, Ehrlich MG, Zaleske DJ, Polsky C, Mankin HJ. Chondrodiastasis in rabbits: a study of the effect of transphyseal bone lengthening on cell division, synthetic function and microcirculation in the growth plate. J Pediatr Orthop 1992;12(2):181–90.PubMedCrossRefGoogle Scholar
  37. 37.
    De Bastiani G, Aldegheri R, Renzi Brivio L, Trivella G. Limb lengthening by distraction of the epiphyseal plate. A comparison of two techniques in the rabbit. J Bone Joint Surg 1986;68(4):545–9.Google Scholar
  38. 38.
    Alberty A. Effects of physeal distraction on the vascular supply of the growth area: a microangiographical study in rabbits. J Pediatr Orthop 1993;13:373–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee SH, Szo G, Simpson H. Response of the physis to leg lengthening. J Pediatr Orthop Part B 2001;10(4):339–43.Google Scholar
  40. 40.
    De Pablos J, Canadell J. Experimental Physeal Distraction in Immature Sheep. Clin Orthop 1990;250: 73–80.PubMedGoogle Scholar
  41. 41.
    Bollini G, Tallet JM, Jacquemier M, Bouyala JM. New procedure to remove a centrally located bone bar. J Pediatr Orthop 1990;10:662–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida G, Hirano T, Shindo H. Deformation and vascular occlusion of the growing rat femoral head induced by mechanical stress. J Orthop Sci 2000;5 (5):495–502.43.PubMedCrossRefGoogle Scholar
  43. 43.
    Edwards TB, Greene CC, Baratta RV, Zieske A, Willis RB. The effect of placing a tensioned graft across open growth plates: a gross and histologic analysis. J Bone Joint Surg 2001;83(5):725–34.PubMedGoogle Scholar
  44. 44.
    Houle JB, Letts M, Yang J. Effects of a tensioned graft in a bone tunnel across the rabbit physis. Clin Orthop Rel Res 2001;391:275–81.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • G. Bollini
  • E. Viewegher
  • J. M. Guillaume
  • F. Launay
  • J. L. Jouve

There are no affiliations available

Personalised recommendations