Skip to main content

Ceramics in Orthopedics

  • Chapter

Abstract

In 1970, Dr Boutin developed, in co-operation with the French company Ceraver, a hip prosthesis with cup and ball made of aluminum oxide ceramic (Al2O3) that he implanted successfully at Marzet Clinic, in Pau, France [1,2], In 1977 in Paris, Professor Sedel started with a cemented plain alumina cup and a cemented titanium stem.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Willmann G. Ceramic cup inserts for hip endoprostheses. Biomed Technik 1996;41:98–105.

    Article  CAS  Google Scholar 

  • Willmann G. Ceramic cup inserts for hip endoprostheses. Biomed Technik 1997;42:256–63.

    Article  CAS  Google Scholar 

  • Liao Y, McKellop H. Effect of forced cooling on the wear of UHMWPE cups against CoCr or zirconia balls. Sixth World Biomaterials Congress. Hawai, 2000.

    Google Scholar 

  • Lu Z, McKellop H. Frictionnai heating of bearing materials tested in a hip joint wear simulator. Proc Instn Mech Eng 1998;211:101–8.

    Google Scholar 

  • Charnier W. MT-W Nr. 97115 der CeramTec, 1997.

    Google Scholar 

  • Willmann G. Wie sicher sind keramische Kugelköptfe für Hüftendoprothesen? Mat Wiss u Werkstofftechnik 1996; 27:280–6.

    Article  CAS  Google Scholar 

  • Fritsch EW, Gleitz M. Ceramic Femoral Head Fractures in Total Hip Arthroplasty. Clin Orthop Rel Res 1996;328: 129–36.

    Article  Google Scholar 

  • Willard L, Sauer M, Anthony E. Predicting the clinical wear performance of orthopaedic bearing surfaces. Alternative bearing surfaces in total joint replacement ASTM STP 1346, American Society For Testing and Materials, 2000.

    Google Scholar 

  • Willmann G. Evaluation of zirconia femoral heads in THR. Third annual symposium on alternative bearing surfaces in total joint replacement. Philadelphia, October 2000.

    Google Scholar 

References

  1. Semlitsch M. When should we employ aluminium oxide ceramics as an alternative to metal balls in articulation with UHMW polyethylene cups of total hip prostheses? Sixth Symposium on Biomaterials. Göttingen, Germany, 1994;1–22.

    Google Scholar 

  2. Willmann G. Bioceramics in orthopaedics. What we have learned in 25 years? Med Orth Tech 2000;120:10–16.

    Google Scholar 

  3. Willmann G, Früh HJ, Pfaff HG. Wear characteristics of sliding pairs of zirconia for hip endoprosthesis. Biomaterials 1996;22:2157–62.

    Article  Google Scholar 

  4. Cales B. Fracture ratio of zirconia hip joint heads compared to other ceramic bearing systems. Norton des-marquest fine ceramics, 1999.

    Google Scholar 

  5. Willmann G. Examen de 87 têtes fémorales en céramique après utilisation in vivo. In: Enke, editor. Bioceramics on Orthopaedics — New applications. Stuttgart, 1998; 13–18.

    Google Scholar 

  6. Willmann G. Investigation of 87 retrieved ceramic femoral heads. In: Enke, editor. Bioceramics in Orthopaedics — New Applications. Stuttgart, 1998;13–18.

    Google Scholar 

  7. Willmann G. Ceramic cup inserts for Hip endoprostheses. Biomed Technik 1997;42:256–63.

    Article  CAS  Google Scholar 

  8. Willmann G, Kälberer H, Pfaff HG. Ceramic cup inserts for hip endoprostheses. Biomed Technik 1996;41:98.

    Article  CAS  Google Scholar 

  9. Jahanmir S. Friction and wear of ceramics — Advanced Ceramics in Tribological Applications 1994;3–12.

    Google Scholar 

  10. Lerouge S, Yahia, Sedei L. Alumina ceramic in total joint replacement. Hip Surg 1998;31–40.

    Google Scholar 

  11. Thomas P. Assessment of immuno-allergological properties of ceramic and metallic compounds in vitro. Hip Int 2000;10(3):359–62.

    Google Scholar 

  12. Davidson JA. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long term ultra-high-molecular-weight polyethylene wear. Clin Ortho Relat Res 1998;294:361–78.

    Google Scholar 

  13. Clarke I. Material properties of structural ceramics. Third Annual Symposium on Alternate Bearing Surfaces in Total Joint Replacement. Philadelphia, Oct 2000.

    Google Scholar 

  14. Heimke G, Willmann G. Follow-up study based on wear debris reduction with ceramic-metal modular hip replacement. Biomaterials Engineering Devices: Human Applications 2000;2:223–51.

    Article  CAS  Google Scholar 

  15. Willmann G. Survival rate and reliability of ceramic femoral heads for THA. Mater Sci Eng 1998; 29(10):595–604.

    CAS  Google Scholar 

  16. Toni A, Sudanese A. Ceramics in Total Arthroplasty. Encyclopedic Handbook of Biomaterials and Bioengineering, Part A, Vol. 2. New York: Marcel Dekker, 1995;1502–44.

    Google Scholar 

  17. Bos I. Histological investigation of polyethylene particles in total hip replacement: Ceramic versus metal head. Hip Int 2000;10(3):151–60.

    Google Scholar 

  18. Masson B, Willmann G, Von Charnier W. Fiabilité du couple alumine/alumine dans la prothèse totale de hanche. Journées Lyonnaise de la Hanche 1999;397–402.

    Google Scholar 

  19. Semlitsch M, Weber H, Steger R. 15 Jahre Erfahrung mit Ti-6Al-78Nb-Legierung für Gelenkprothesen. Biomed Technik 1995;40:347–55.

    Article  CAS  Google Scholar 

  20. Semlitsch M, Dawihl D. Basic Requirements of Alumina Ceramic in Artificial hip Joints Balls in Articulation with Polyethylene Cups. Technical Principles, Design and Safety of Joint Implants. Seattle: Hogrefe 8c Huber, 1994;99–101.

    Google Scholar 

  21. Jahanmir S. Friction and wear of ceramics — Advanced Ceramics in Tribological Applications. 1994;3–12.

    Google Scholar 

  22. Cales B. Fracture ratio of zirconia hip joint heads compared to other ceramic-bearing systems. Norton des-marquest fine ceramics, 1999.

    Google Scholar 

  23. Piconi C, Maccauro. Zirconia as a ceramic biomaterial. Biomaterials, 20th ed. Elsevier 1999;1–25.

    Google Scholar 

  24. Yoshimura M. Phase stability of zirconia. Tokyo institute of technology research lab of engineering materials Ceramic bulletin 1998;67(12):1950–5.

    Google Scholar 

  25. UK Medical Devices Agency, Adverse Incidents Centre. Safety Notice MDA SN 9617, “Zirconia Ceramic Heads for Modular Total Hip Femoral Components: Advice to Users on Re-Sterilization”.

    Google Scholar 

  26. Pfaff HG. A new material concept for bioceramics in orthopedics. Bioceramics in hip joint replacement. Fifth symposium, CeramTec Stuttgart, 2000; 136–45.

    Google Scholar 

  27. Claussen N. Fracture toughness of Al2O3 with an unsta-bilized ZrO2 dispersed phase. J American Ceramic Society 59(1–2).

    Google Scholar 

  28. Burger W, Richter HG. High strength and toughness alumina matrix composites by transformation toughening and in situ platelet reinforcement (ZPTA) — The new generation of bioceramics. Bioceramics 2000;13:454–548.

    Google Scholar 

  29. Masson B. CeraNews Septembre 2000; 10, CeramTec.

    Google Scholar 

  30. Willmann G. Wear characteristics of sliding pairs of zirconia (Y-TZP) for hip endoprostheses. Biomaterials 1996;17(22):2157–62.

    Article  PubMed  CAS  Google Scholar 

  31. Saikko V, Pfaff H-G. Wear of alumina on alumina total replacement hip joints studied with hip simulator. Second Symposium on ceramic wear couples. Stuttgart, 1997;117–122.

    Google Scholar 

  32. Bos I, Henssge J, Willmann G. Morphological characterisation of joint capsule around hip prostheses with alumina or alumina combinations. Die Keramikpaarung BIOLOX in der Hüftendoprothetik. Proceedings des 1. CERASIV Symposiums. Stuttgart 1996;24–30.

    Google Scholar 

  33. Morlock M. The wear couple Zirconia/Alumina in THR: A case study. Reliability and long-term results of ceramics in orthopaedics. Stuttgart, 1999; 102–7.

    Google Scholar 

  34. Kaddick C, Pfaff H-G. Wear study in the alumina-zirconia system: reliability and long-term results of ceramics in orthopaedics. Stuttgart, 1999;96–101.

    Google Scholar 

  35. Willmann G, Kälberer H. Ceramic cup insert for hip endoprostheses. Biomed Technik 1996;41:98–105.

    Article  CAS  Google Scholar 

  36. Willmann G. Ceramic sockets for total hip replacement; Never mix and match. Biomed Technik 1998;43:184–6.

    Article  CAS  Google Scholar 

  37. Willmann G. Experience on zirconia ceramic femoral heads. Sixth World biomaterial congress. Hawaii, 2000.

    Google Scholar 

  38. Garino JP. The status and early results of modern ceramic-ceramic total hip replacement in the United States. Bioceramics in hip joint replacement. Fifth symposium. CeramTec: Stuttgart, 2000;88–91.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Masson, B., Rack, R., Willmann, G., Pfaff, H.G. (2004). Ceramics in Orthopedics. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics