Advertisement

Striated Muscles, an Underestimated Natural Biomaterial: Their Essential Contribution to Healing and Reconstruction of Bone Defects

  • H. Stein
  • M. Solomonow
Chapter

Abstract

Surgery of the musculoskeletal system is the most vibrant, quickly developing and enlarging reconstructive surgical specialty of this century. The current ten years are dedicated to this subject, and entitled “The bone and joint decade” which is a tribute to this subject’s significance.

Keywords

Motor Unit Tibial Plateau Fracture Motor Unit Recruitment Ilizarov External Fixator Frame Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Acierno S et al. Manual For Understanding and Using EMG. Bioengineering Laboratory, LSU Health Sciences Center, 1996.Google Scholar
  2. Solomonow M et al. EMG — force model of a single muscle acting across the joint: dependence on joint angle. J EMG & Kinesiology 1991;1:58–67.CrossRefGoogle Scholar
  3. Solomonow M, Guzzi A et al. Antagonistic muscles: gravity, joint geometry and recruitment. Am J Phys Med 1986;65:223–42.PubMedGoogle Scholar
  4. Standards for Reporting EMG Data. J EMG & Kinesiology (printed in every issue since 1996;6(1)).Google Scholar

References

  1. 1.
    Calhoun JH, Li F, Bauford WL, Lehman T, Ledbetter FR, Lowery R. Rigidity of half-pins for the Ilizarov external fixator. Bull Hosp Jt Dis Orthop Inst 1992;52(1):21–6.Google Scholar
  2. 2.
    Ilizarov GA. Clinical application of the tension stress effect for limb lengthening. Clin Orthop 1990;250:8–26.PubMedGoogle Scholar
  3. 3.
    Ilizarov GA. Transosseous osteosynthesis. Heidelberg: Springer, 1991;3–279.Google Scholar
  4. 4.
    Jorgens C, Schmidt HG, Schumann U, Fink B. Ilizarov ring fixation and its technical application. Unfallchirurg 1992;95(11):529–33.Google Scholar
  5. 5.
    Paley D, Catangi M, Argnani F, Villa A, Benedetti GB, Cattaneo R. Ilizarov treatment of tibial non-unions with bone loss. Clin Ortho 1989;141:146.Google Scholar
  6. 6.
    Gasser B, Bowman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixator. J Biomech Eng 1990; 112:15.PubMedCrossRefGoogle Scholar
  7. 7.
    Aronson IA, Harp JH. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Ortho 1992;280:23–9.Google Scholar
  8. 8.
    Monticelli G, Spinelli R. Limb lengthening by closed metaphyseal corticotomy. Ital J Ortho Traumatol 1983;4: 139–50.Google Scholar
  9. 9.
    Hardy JM. Le fixateur externe monolateral “CAPUCINE”. Presented at the 18th SICOT meeting. September 1990. Montreal, Canada. Poster No. 94, p. 492.Google Scholar
  10. 10.
    Wasserstein I, Correi J, Niethard FU. Closed distraction epiphysiolysis for leg lengthening and axis correction of the leg in children. Z Orthop 1986;124(B):743–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner R. Operative lengthening of femur. Clin Orthop 1978;136:125–42.PubMedGoogle Scholar
  12. 12.
    Green SA, Harris NL, Wall DM, Iskanian J, Marinow H. The Rancho mounting technique for Ilizarov method. A preliminary report. Clin Orthop 1992;280:104–16.PubMedGoogle Scholar
  13. 13.
    DeBastiani G, Aldergheri R, Renzi-Brivio L, Trivella G. Limb lengthening by callus distraction (Callotasis). J Pediatr Orthop 1987;7:129–34.CrossRefGoogle Scholar
  14. 14.
    Kenwright J. The influence of cyclic loading upon fracture healing. J R Coll Surg Ed 1989;34(3):160.Google Scholar
  15. 15.
    Fleming B, Paley D, Kristiansen T, Pope M. A biome-chanical analysis of the Ilizarov external fixator. Clin Orthop 1989;241:95–105.PubMedGoogle Scholar
  16. 16.
    Green SA. The use of wires and pins. Techn Orthop 1990;5:19–25.CrossRefGoogle Scholar
  17. 17.
    Alonso JE. Regazzoni P. The use of Ilizarov concept with the AO/ASIF tubular fixator in the treatment of segmental defects. Orthop Clin North Am 1990;21(4): 655–65.PubMedGoogle Scholar
  18. 18.
    Uhli RL, Goldstock L, Carter AT, Lozman J. Hybrid external fixation for bicondylar tibial plateau fractures. Presented at the 61st American Academy of Orthopaedic Surgeons Meeting. 26 February 1994, New Orleans, LA 278, p. 192.Google Scholar
  19. 19.
    Weiner L. Fixation for complex tibial plateau fractures hybrid fixator. Presented at the Orthopaedic Trauma Association Specialty Day Symposium, 61st American Academy of Orthopaedic Surgeons Meeting, 26 February 1994, New Orleans, LAGoogle Scholar
  20. 20.
    Chamay A, Tschentz P. Mechanical influence in bone remodeling. Experimental research on Wolffs law. J Biomech 1972;5:173.PubMedCrossRefGoogle Scholar
  21. 21.
    Goodship AE, Kenwright J. The influence of induced micro-motion upon the healing of experimental tibia fractures. J Bone Joint Surg 1985;67(b):650.Google Scholar
  22. 22.
    Kempson GE. Campbell D. The comparative stiffness of external fixation frames. Injury 1981; 12:297.PubMedCrossRefGoogle Scholar
  23. 23.
    Kristiansen T, Fleming B, Neal G, Reinecke S, Pope MH. Comparative study of fracture gap motion in external fixation. Clin Biomech 1987;2:191.CrossRefGoogle Scholar
  24. 24.
    Panjoli MM, White AA, Wolf JW. A biomechanical cyclic compression of fracture healing in long bones. Acta Orthop Scand 1979;50:653.CrossRefGoogle Scholar
  25. 25.
    Rubin CT, Lonjon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 1987;66(A): 397.Google Scholar
  26. 26.
    Sarmiento A, Schaeffer JF, Beckerman L, Latta L, Emis JE. Fracture healing in rat femur is affected by functional weight bearing. J Bone Joint Surg 1977;59(A):367.Google Scholar
  27. 27.
    Wu JJ, Shyr HS, Chao EYS, Kelly PJ. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg 1984;66(A):1258.PubMedGoogle Scholar
  28. 28.
    Chao EYS. Orthopaedic biomechanics. The past, present and future. Int Orthop 1996;20:239–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Stein H, Perren SM, Moscheiff R, Baumgart F, Cordey J. The spontaneous decline in the transfixing K-wire’s tension of the circular external fixator. Orthopedics 2001 (in press).Google Scholar
  30. 30.
    Stein H, Cordey J, Perren SM. Segment transport for biological reconstruction of bone defects. Injury 1993;Suppl 24(2):20–4.CrossRefGoogle Scholar
  31. 31.
    Stein H, Coleman R, Mosheiff R, Cordey J, Rahn BA, Reznick A. Changes induced in limb muscles by distraction osteogenesis. Trans 43rd ORS Meeting, San Francisco, CA 1997, p. 703.Google Scholar
  32. 32.
    Mosheiff R, Cordey J, Rahn BA, Perren SM, Stein H. The vascular supply to bone formed by distraction osteogenesis. An Experimental Study. J Bone Jt Surg 1996;78-B:497–8.Google Scholar
  33. 33.
    Delprete C, Golo MM. Mechanical performance of external fixator with wires for the treatment of bone fractures. Part 1. Load displacement behavior. J Biomech Eng 1993;115:29–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Stein H, Cordey J, Mosheiff R, Perren SM. Observation on the stiffness of neogenetic bone produced by distraction or segment transport and its relationship to bone density. In: Wolter D, Hansis M, Havemann D, editors. 150 years Fixateursysteme. Berlin, Heidelberg, New York: Springer Verlag, 1995;47–9.CrossRefGoogle Scholar
  35. 35.
    Younger ASE, Mackenzie WG, Morrison JB. Femoral forces during limb lengthening in children. Clin Orthop 1994;301:55–63.PubMedGoogle Scholar
  36. 36.
    Solomonow M et al. EMG — force model: dependence on control strategy and fiber composition. IEEE Trans Biomed Eng 1987;34:692–702.PubMedCrossRefGoogle Scholar
  37. 37.
    Johnson M et al. Data on the distribution of fiber types in 36 human muscles. J Neurophysiol 1965;28:85–99.Google Scholar
  38. 38.
    Solomonow M et al. EMG — force of skeletal muscle: contraction rate and motor units control strategy. EMG & Clin Neurophysiol 1990;30:141–52.Google Scholar
  39. 39.
    Henneman E et al. Functional significance of cell size in spinal motor neurons. J Neurophysiol 1965;28:560–80.PubMedGoogle Scholar
  40. 40.
    Solomonow M et al. EMG power spectra associated with recruitment strategies. J Appl Physiol 1990;68:1177–85.PubMedGoogle Scholar
  41. 41.
    Bernardi M et al. Motor unit recruitment strategy changes with skill acquisition. Eur J Appl Physiol 1996; 74:52–9.CrossRefGoogle Scholar
  42. 42.
    Fugelvand A et al. Detection of motor unit action potentials with surface electrodes: electrodes size and spacing. Biol Cybernetics 1992;67:143–53.CrossRefGoogle Scholar
  43. 43.
    Solomonow M et al. Surface and wire EMG cross-talk in neighbouring muscles. J EMG & Kinesiology 1994;4: 131–42.CrossRefGoogle Scholar
  44. 44.
    Baratta RV et al. Methods to reduce the variability of EMG power spectrum estimates. J EMG & Kinesiology 1998;8:279–85.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • H. Stein
  • M. Solomonow

There are no affiliations available

Personalised recommendations