Skip to main content

Striated Muscles, an Underestimated Natural Biomaterial: Their Essential Contribution to Healing and Reconstruction of Bone Defects

  • Chapter
  • 892 Accesses

Abstract

Surgery of the musculoskeletal system is the most vibrant, quickly developing and enlarging reconstructive surgical specialty of this century. The current ten years are dedicated to this subject, and entitled “The bone and joint decade” which is a tribute to this subject’s significance.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Acierno S et al. Manual For Understanding and Using EMG. Bioengineering Laboratory, LSU Health Sciences Center, 1996.

    Google Scholar 

  • Solomonow M et al. EMG — force model of a single muscle acting across the joint: dependence on joint angle. J EMG & Kinesiology 1991;1:58–67.

    Article  CAS  Google Scholar 

  • Solomonow M, Guzzi A et al. Antagonistic muscles: gravity, joint geometry and recruitment. Am J Phys Med 1986;65:223–42.

    PubMed  CAS  Google Scholar 

  • Standards for Reporting EMG Data. J EMG & Kinesiology (printed in every issue since 1996;6(1)).

    Google Scholar 

References

  1. Calhoun JH, Li F, Bauford WL, Lehman T, Ledbetter FR, Lowery R. Rigidity of half-pins for the Ilizarov external fixator. Bull Hosp Jt Dis Orthop Inst 1992;52(1):21–6.

    CAS  Google Scholar 

  2. Ilizarov GA. Clinical application of the tension stress effect for limb lengthening. Clin Orthop 1990;250:8–26.

    PubMed  Google Scholar 

  3. Ilizarov GA. Transosseous osteosynthesis. Heidelberg: Springer, 1991;3–279.

    Google Scholar 

  4. Jorgens C, Schmidt HG, Schumann U, Fink B. Ilizarov ring fixation and its technical application. Unfallchirurg 1992;95(11):529–33.

    Google Scholar 

  5. Paley D, Catangi M, Argnani F, Villa A, Benedetti GB, Cattaneo R. Ilizarov treatment of tibial non-unions with bone loss. Clin Ortho 1989;141:146.

    Google Scholar 

  6. Gasser B, Bowman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixator. J Biomech Eng 1990; 112:15.

    Article  PubMed  CAS  Google Scholar 

  7. Aronson IA, Harp JH. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Ortho 1992;280:23–9.

    Google Scholar 

  8. Monticelli G, Spinelli R. Limb lengthening by closed metaphyseal corticotomy. Ital J Ortho Traumatol 1983;4: 139–50.

    Google Scholar 

  9. Hardy JM. Le fixateur externe monolateral “CAPUCINE”. Presented at the 18th SICOT meeting. September 1990. Montreal, Canada. Poster No. 94, p. 492.

    Google Scholar 

  10. Wasserstein I, Correi J, Niethard FU. Closed distraction epiphysiolysis for leg lengthening and axis correction of the leg in children. Z Orthop 1986;124(B):743–50.

    Article  PubMed  CAS  Google Scholar 

  11. Wagner R. Operative lengthening of femur. Clin Orthop 1978;136:125–42.

    PubMed  Google Scholar 

  12. Green SA, Harris NL, Wall DM, Iskanian J, Marinow H. The Rancho mounting technique for Ilizarov method. A preliminary report. Clin Orthop 1992;280:104–16.

    PubMed  Google Scholar 

  13. DeBastiani G, Aldergheri R, Renzi-Brivio L, Trivella G. Limb lengthening by callus distraction (Callotasis). J Pediatr Orthop 1987;7:129–34.

    Article  CAS  Google Scholar 

  14. Kenwright J. The influence of cyclic loading upon fracture healing. J R Coll Surg Ed 1989;34(3):160.

    CAS  Google Scholar 

  15. Fleming B, Paley D, Kristiansen T, Pope M. A biome-chanical analysis of the Ilizarov external fixator. Clin Orthop 1989;241:95–105.

    PubMed  Google Scholar 

  16. Green SA. The use of wires and pins. Techn Orthop 1990;5:19–25.

    Article  Google Scholar 

  17. Alonso JE. Regazzoni P. The use of Ilizarov concept with the AO/ASIF tubular fixator in the treatment of segmental defects. Orthop Clin North Am 1990;21(4): 655–65.

    PubMed  CAS  Google Scholar 

  18. Uhli RL, Goldstock L, Carter AT, Lozman J. Hybrid external fixation for bicondylar tibial plateau fractures. Presented at the 61st American Academy of Orthopaedic Surgeons Meeting. 26 February 1994, New Orleans, LA 278, p. 192.

    Google Scholar 

  19. Weiner L. Fixation for complex tibial plateau fractures hybrid fixator. Presented at the Orthopaedic Trauma Association Specialty Day Symposium, 61st American Academy of Orthopaedic Surgeons Meeting, 26 February 1994, New Orleans, LA

    Google Scholar 

  20. Chamay A, Tschentz P. Mechanical influence in bone remodeling. Experimental research on Wolffs law. J Biomech 1972;5:173.

    Article  PubMed  CAS  Google Scholar 

  21. Goodship AE, Kenwright J. The influence of induced micro-motion upon the healing of experimental tibia fractures. J Bone Joint Surg 1985;67(b):650.

    CAS  Google Scholar 

  22. Kempson GE. Campbell D. The comparative stiffness of external fixation frames. Injury 1981; 12:297.

    Article  PubMed  CAS  Google Scholar 

  23. Kristiansen T, Fleming B, Neal G, Reinecke S, Pope MH. Comparative study of fracture gap motion in external fixation. Clin Biomech 1987;2:191.

    Article  Google Scholar 

  24. Panjoli MM, White AA, Wolf JW. A biomechanical cyclic compression of fracture healing in long bones. Acta Orthop Scand 1979;50:653.

    Article  Google Scholar 

  25. Rubin CT, Lonjon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 1987;66(A): 397.

    Google Scholar 

  26. Sarmiento A, Schaeffer JF, Beckerman L, Latta L, Emis JE. Fracture healing in rat femur is affected by functional weight bearing. J Bone Joint Surg 1977;59(A):367.

    Google Scholar 

  27. Wu JJ, Shyr HS, Chao EYS, Kelly PJ. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg 1984;66(A):1258.

    PubMed  CAS  Google Scholar 

  28. Chao EYS. Orthopaedic biomechanics. The past, present and future. Int Orthop 1996;20:239–43.

    Article  PubMed  CAS  Google Scholar 

  29. Stein H, Perren SM, Moscheiff R, Baumgart F, Cordey J. The spontaneous decline in the transfixing K-wire’s tension of the circular external fixator. Orthopedics 2001 (in press).

    Google Scholar 

  30. Stein H, Cordey J, Perren SM. Segment transport for biological reconstruction of bone defects. Injury 1993;Suppl 24(2):20–4.

    Article  Google Scholar 

  31. Stein H, Coleman R, Mosheiff R, Cordey J, Rahn BA, Reznick A. Changes induced in limb muscles by distraction osteogenesis. Trans 43rd ORS Meeting, San Francisco, CA 1997, p. 703.

    Google Scholar 

  32. Mosheiff R, Cordey J, Rahn BA, Perren SM, Stein H. The vascular supply to bone formed by distraction osteogenesis. An Experimental Study. J Bone Jt Surg 1996;78-B:497–8.

    Google Scholar 

  33. Delprete C, Golo MM. Mechanical performance of external fixator with wires for the treatment of bone fractures. Part 1. Load displacement behavior. J Biomech Eng 1993;115:29–36.

    Article  PubMed  CAS  Google Scholar 

  34. Stein H, Cordey J, Mosheiff R, Perren SM. Observation on the stiffness of neogenetic bone produced by distraction or segment transport and its relationship to bone density. In: Wolter D, Hansis M, Havemann D, editors. 150 years Fixateursysteme. Berlin, Heidelberg, New York: Springer Verlag, 1995;47–9.

    Chapter  Google Scholar 

  35. Younger ASE, Mackenzie WG, Morrison JB. Femoral forces during limb lengthening in children. Clin Orthop 1994;301:55–63.

    PubMed  Google Scholar 

  36. Solomonow M et al. EMG — force model: dependence on control strategy and fiber composition. IEEE Trans Biomed Eng 1987;34:692–702.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson M et al. Data on the distribution of fiber types in 36 human muscles. J Neurophysiol 1965;28:85–99.

    Google Scholar 

  38. Solomonow M et al. EMG — force of skeletal muscle: contraction rate and motor units control strategy. EMG & Clin Neurophysiol 1990;30:141–52.

    CAS  Google Scholar 

  39. Henneman E et al. Functional significance of cell size in spinal motor neurons. J Neurophysiol 1965;28:560–80.

    PubMed  CAS  Google Scholar 

  40. Solomonow M et al. EMG power spectra associated with recruitment strategies. J Appl Physiol 1990;68:1177–85.

    PubMed  CAS  Google Scholar 

  41. Bernardi M et al. Motor unit recruitment strategy changes with skill acquisition. Eur J Appl Physiol 1996; 74:52–9.

    Article  CAS  Google Scholar 

  42. Fugelvand A et al. Detection of motor unit action potentials with surface electrodes: electrodes size and spacing. Biol Cybernetics 1992;67:143–53.

    Article  Google Scholar 

  43. Solomonow M et al. Surface and wire EMG cross-talk in neighbouring muscles. J EMG & Kinesiology 1994;4: 131–42.

    Article  CAS  Google Scholar 

  44. Baratta RV et al. Methods to reduce the variability of EMG power spectrum estimates. J EMG & Kinesiology 1998;8:279–85.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Stein, H., Solomonow, M. (2004). Striated Muscles, an Underestimated Natural Biomaterial: Their Essential Contribution to Healing and Reconstruction of Bone Defects. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics