Skip to main content

Kinetics of the Interaction of Human Leucocyte Elastase with Protein Substrates: Implications for Enzyme Inhibition

  • Chapter
Biochemistry of Pulmonary Emphysema

Part of the book series: Current Topics in Rehabilitation ((CURRENT REHAB))

Abstract

Human leucocyte elastase (EC 3.4.21.37) is possibly one of the most destructive enzymes in the body, having the ability to degrade many components of the extracellular matrix such as insoluble collagens type I and II,1 type III collagen,2 type IV collagen,3,4 proteoglycans1,5 and elastin.6,7 Other natural substrates degraded by leucocyte elastase are the four human immunoglobulin G subclasses,8 immunoglobulin M9 and the cell adhesion molecule fibronectin.10 For these reasons leucocyte elastase has been associated with pathological states characterized by an abnormal degradation of connective tissue, in particular with pulmonary emphysema,11,12 rheumatoid arthritis,13 clotting disorders and other inflammatory processes.14 An attractive approach for the treatment of emphysema15–17 and other pathological states characterized by the loss of the structural elements of the extracellular matrix is the use of low molecular mass synthetic inhibitors of endopeptidases. However, despite the existence of a large number of endopeptidase inhibitors that are very active in vitro, very few of them are able to exert beneficial effects in vivo through inhibition of proteolysis. The manifold reasons for this failure, which are essentially due to the particular nature of the enzymes and their target substrates in the extracellular matrix, such as collagen, proteoglycans and elastin, have been discussed.18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starkey P.M., Barrett A.J., Burleigh M.C.: The degradation of articular collagen by neutrophil proteinases. Biochim. Biophys. Acta 1977; 483: 386–397

    Article  PubMed  CAS  Google Scholar 

  2. Mainardi C.L., Hasty D.L., Seyer J.M., Kang A.H.: Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J. Biol. Chem. 1980; 255: 12006–12010

    PubMed  CAS  Google Scholar 

  3. Davies M., Barrett A.J., Travis J., Sanders E., Coles G.A.: The degradation of human glomerular basement membrane with purified lysosomal proteinases: evidence for the pathogenic role of the polymorphonuclear leukocyte in glomerulonephritis. Clin. Sci. Mol. Med. 1978; 54: 233–240

    PubMed  CAS  Google Scholar 

  4. Mainardi C.L., Dixit S.N., Kang A.H.: Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J. Biol. Chem. 1980; 255: 5435–5441

    PubMed  CAS  Google Scholar 

  5. Keiser H., Greenwald R.A., Feinstein G., Janoff A.: Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases. A model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J. Clin. Invest. 1976; 57: 625–632

    Article  PubMed  CAS  Google Scholar 

  6. Janoff A., Scherer J.: Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J. Exp. Med. 1968; 128: 1137–1155

    Article  PubMed  CAS  Google Scholar 

  7. Galdston M., Levytska V., Liener I.E., Twumasi D.Y.: Degradation of tropoelastin and elastin substrates by human neutrophil elastase, free and bound to alpha2-macroglobulin in serum of the M and Z(Pi) phenotypes for alphal-antitrypsin. Amer. Rev. Respir. Dis. 1979; 119: 435–441

    CAS  Google Scholar 

  8. Baici A., Knöpfel M., Fehr K., Skvaril F., Böni A.: Kinetics of the different susceptibility of the four human immunoglobulin G subclasses to proteolysis by human lysosomal elastase. Scand. J. Immunol. 1980; 12: 41–50

    Article  PubMed  CAS  Google Scholar 

  9. Baici A., Knöpfel M., Fehr K., Böni A.: Cleavage of human IgM with human lysosomal elastase. Immunol. Lett. 1980; 2: 47–51

    Article  CAS  Google Scholar 

  10. McDonald J.A., Kelley D.G.: Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments. J. Biol. Chem. 1980; 255: 8848–8858

    PubMed  CAS  Google Scholar 

  11. Snider G.L.: Pathogenesis of emphysema and chronic bronchitis. Med. Clin. North Amer. 1981; 65: 647–665

    CAS  Google Scholar 

  12. Janoff A.: Elastase in tissue injury. Annu. Rev. Med. 1985; 36: 207–216

    Article  PubMed  CAS  Google Scholar 

  13. Barrett A.J.: The possible role of neutrophil proteinases in damage to articular cartilage. Agents Actions 1978; 8: 11–18

    Article  PubMed  CAS  Google Scholar 

  14. Fritz H., Jochum M., Duswald K.H., Dittmer H., Kortmann H., Neumann S., Lang H.: Granulocyte proteinases as mediators of unspecific proteolysis in inflammation: a review. In: Goldberg D.M., Werner M. (Eds.): Selected topics in clinical enzymology,Vol. 2. Berlin, W. de Gruyter 1984; 305328

    Google Scholar 

  15. Trainor D.A.: Synthetic inhibitors of human neutrophil elastase. Trends Pharmacol. Sci. 1987; 8: 303–307

    CAS  Google Scholar 

  16. Weinbaum G., Damiano V.V.: Protease inhibitor therapy in emphysema: a promising theory with problems. Trends Pharmacol. Sci. 1987; 8: 6–7

    Google Scholar 

  17. Groutas W.C.: Inhibitors of leukocyte elastase and leukocyte cathepsin G. Agents for the treatment of emphysema and related ailments. Med. Res. Rev. 1987; 7: 227–241

    Article  PubMed  CAS  Google Scholar 

  18. Baici A.: Criteria for the choice of inhibitors of extracellular matrix-degrading endopeptidases. In: Glauert A.M. (Ed.): The control of tissue damage. Amsterdam, Elsevier 1988; 243–258

    Google Scholar 

  19. Gertler A.: The non-specific electrostatic nature of the adsorption of elastase and other basic proteins on elastin. Eur. J. Biochem. 1971; 20: 541–546

    Article  PubMed  CAS  Google Scholar 

  20. Robert B., Hornebeck W., Robert L.: Cinétique hétérogène de l’interaction élastine-élastase. Biochimie 1974; 56: 239–244

    Article  PubMed  CAS  Google Scholar 

  21. Jordan R.E., Hewitt N., Lewis W., Kagan H., Franzblau C.: Regulation of elastase-catalyzed hydrolysis of insoluble elastin by synthetic and naturally occurring hydrophobic ligands. Biochemistry 1974; 17: 3497–3503

    Article  Google Scholar 

  22. Kagan H.M., Lerch R.M.: Amidated carboxyl groups in elastin. Biochim. Biophys. Acta 1976; 434: 223–232

    Article  PubMed  CAS  Google Scholar 

  23. Lonky S.A., Wohl H.: Regulation of elastolysis of insoluble elastin by human leukocyte elastase: stimulation by lysine-rich ligands, anionic detergents, and ionic strength. Biochemistry 1983; 22: 3714–3720

    Article  PubMed  CAS  Google Scholar 

  24. Reilly C.F., Travis J.: The degradation of human lung elastin by neutrophil proteinases. Biochim. Biophys. Acta 1980; 621: 147–157

    Article  PubMed  CAS  Google Scholar 

  25. Kueppers F., Abrams W.R., Weinbaum G., Rosenbloom J.: Resistance of tropoelastin and elastin peptides to degradation by a2-macroglobulin-protease complexes. Arch. Biochem. Biophys. 1981; 211: 143–150

    Article  PubMed  CAS  Google Scholar 

  26. Hornebeck W., Schnebli H.P.: Leukocyte elastase adsorbed to elastin is incompletely inhibited by al-proteinase inhibitor. Hoppe Seyler’s Z. Physiol. Chem. 1982; 363: 455–458

    CAS  Google Scholar 

  27. Hornebeck W., Brechemier D., Jacob M.P., Frances C., Robert L.: On the multiplicity of cellular elastases and their inefficient control by natural inhibitors. Adv. Exp. Med. Biol. 1984; 167: 11 1119

    Google Scholar 

  28. Hornebeck W., Soleihac J.M., Velebny V., Robert L.: On the influence of the substrate (elastin) in elastase-al antitrypsin interactions. Pathol. Biol. 1985; 33: 281–285

    PubMed  CAS  Google Scholar 

  29. Hornebeck W., Moczar E., Szecsi J., Robert L.: Fatty acid peptide derivatives as model compounds to protect elastin against degradation by elastases. Biochem. Pharmacol. 1985; 34: 3315–3321

    Article  PubMed  CAS  Google Scholar 

  30. Bruch M., Bieth J.G.: Influence of elastin on the inhibition of leukocyte elastase by al-proteinase inhibitor and bronchial inhibitor. Potent inhibition of elastin-bound elastase by bronchial inhibitor. Biochem. J. 1986; 238: 269–273

    PubMed  CAS  Google Scholar 

  31. Kramps J.A., Morrison H.M., Burnett D., Dijkman J.H., Stockley R.A.: Determination of elastase inhibitory activity of al-proteinase inhibitor and bronchial antileukoprotease: different results using insoluble elastin or synthetic low molecular weight substrates. Scand. J. Clin. Lab. Invest. 1987; 47: 405–410

    PubMed  CAS  Google Scholar 

  32. Morrison H.M., Welgus H.G., Stockley R.A., Burnett D., Campbell E.J.: Inhibition of human leukocyte elastase bound to elastin: relative ineffectiveness and two mechanisms of inhibitory activity. Amer. J. Respir. Cell. Molec. Biol. 1990; 2: 263–269

    Article  CAS  Google Scholar 

  33. Cha S.: Tight-binding inhibitors - I. Kinetic behavior. Biochem. Pharmacol. 1975; 24: 2177–2185. But see corrections by Cha S. Biochem. Pharmacol. 1976; 25: 1561

    Google Scholar 

  34. Cha S.: Tight-binding inhibitors–III. A new approach for the determination of competition between tight-binding inhibitors and substrates. Inhibition of adenosine deaminaseby coformycin. Biochem. Pharmacol. 1976; 25: 2695–2702

    Article  PubMed  CAS  Google Scholar 

  35. Cha S.: Tight-binding inhibitors–VII. Extended interpretation of the rate equation. Experimental designs and statistical methods. Biochem. Pharmacol. 1980; 29: 1779–1789

    Article  PubMed  CAS  Google Scholar 

  36. Morrison J.F.: The slow-binding and slow, tight-binding inhibition of enzyme-catalysed reactions. Trends Biochem. Sci. 1982; 7; 102–105

    CAS  Google Scholar 

  37. Morrison J.F., Stone S.R.: Approaches to the study and analysis of the inhibition of enzymes by slow and tight-binding inhibitors. Comments Mol. Cell. Biophys. 1985; 2: 347–368

    CAS  Google Scholar 

  38. Morrison J.F., Walsh C.T.: The behavior and significance of slow-binding inhibitors. Adv. Enzymol. Relat. Areas Mol. Biol. 1988; 61: 201–301

    PubMed  CAS  Google Scholar 

  39. Bieth J.G.: Pathophysiological interpretation of kinetic constants of protease inhibitors. Bull. Eur. Physiopathol. Respir. 1980; 16 (Suppl.): 183–195

    PubMed  CAS  Google Scholar 

  40. Bieth J.G.: In vivo significance of kinetic constants of protein proteinase inhibitors. Biochem. Med. 1984; 32: 387–397

    Article  PubMed  CAS  Google Scholar 

  41. Baici A.: Interaction of human leukocyte elastase with soluble and insoluble protein substrates. A practical kinetic approach. Biochim. Biophys. Acta 1990; 1040: 355–364

    Article  PubMed  CAS  Google Scholar 

  42. Baici A.: The specific velocity plot. A graphical method for determining inhibition parameters for both linear and hyperbolic enzyme inhibitors. Eur. J. Biochem. 1981; 119: 9–14

    Article  PubMed  CAS  Google Scholar 

  43. Baici A., Gyger-Marazzi M.: The slow, tight-binding inhibition of cathepsin B by leupeptin. A hysteretic effect. Eur. J. Biochem. 1982; 129: 33–41

    Article  PubMed  CAS  Google Scholar 

  44. Baici A.: Pre-steady-state kinetic analysis of the interaction of proteinases with slow-binding inhibitors. Symp. Biol. Hung. 1984; 25: 355–367

    CAS  Google Scholar 

  45. Baici A., Seemüller U.: Kinetics of the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis Biochem. J. 1984; 218: 829–833

    CAS  Google Scholar 

  46. Baici A.: Hysteretic enzyme response induced by inhibitory antibodies against human leukocyte elastase. Biol. Chem. Hoppe-Seyler 1986; 367: 245–258

    Article  PubMed  CAS  Google Scholar 

  47. Baici A., Pelloso R., Hörler D.: The kinetic mechanism of inhibition of human leukocyte elastase by MR889, a new cyclic thiolic compound. Biochem. Pharmacol. 1990; 39: 919–924

    Article  PubMed  CAS  Google Scholar 

  48. Cornish-Bowden A.: Fundamentals of enzyme kinetics. London, Butterworths 1979; p. 84

    Google Scholar 

  49. Orsi B.A., Tipton K.F.: Kinetic analysis of progress curves. Meth. Enzymol. 1979; 63: 159–183

    Article  PubMed  CAS  Google Scholar 

  50. Segel I.H.: Enzyme kinetics. New York, Wiley 1975; p. 54–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London

About this chapter

Cite this chapter

Baici, A. (1992). Kinetics of the Interaction of Human Leucocyte Elastase with Protein Substrates: Implications for Enzyme Inhibition. In: Grassi, C., Travis, J., Casali, L., Luisetti, M. (eds) Biochemistry of Pulmonary Emphysema. Current Topics in Rehabilitation. Springer, London. https://doi.org/10.1007/978-1-4471-3771-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3771-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3773-3

  • Online ISBN: 978-1-4471-3771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics