Skip to main content

Synthetic Mechanism-Based and Transition-State Inhibitors for Human Neutrophil Elastase

  • Chapter
Biochemistry of Pulmonary Emphysema

Part of the book series: Current Topics in Rehabilitation ((CURRENT REHAB))

Abstract

Chronic Obstructive Pulmonary Disease (COPD), comprised of chronic bronchitis and pulmonary emphysema, is a serious health problem in the world. In the USA, COPD caused more than 70,000 deaths in 1986 and more than 10,000,000 Americans suffered from the disease.1 The association between severe α1protease inhibitor (α1PI) deficiency and emphysema has led to the hypothesis that an elastase-antielastase imbalance causes emphysema.2,3 Human neutrophil elastase (HNE) is most likely the cause of emphysema in both smokers and non-smokers, although the evidence supporting the elastase-antielastase hypothesis is largely indirect in smokers with normal protective levels of α1PI. Homogenates of leucocytes as well as highly purified preparations of HNE produce emphysema in experimental animals and only elastolytic enzymes will induce experimental emphysema. In addition, neutrophils are increased 4–5 fold in the lungs of smokers and it is postulated that α1PI is inactivated by powerful oxidizing agents in the cigarette smoke and PMNs contributing to the elastase-antielastase imbalance. Other proteases including human proteinase 3 and macrophage elastase may also play a role in lung destruction in emphysema. Nevertheless, the majority of investigators in the field believe that a human neutrophil elastase-antielastase imbalance plays the major role in the pathogenesis of emphysema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Higgins M.W., Thom T.: Incidence, prevalence and mortality: infra and intercounty differences. In: Hensley M.J., Saunders N.A. (Eds.). Clinical epidemiology of chronic obstructive pulmonary Disease. New York, Marcel Dekker Inc., 1989; 24–30

    Google Scholar 

  2. Janoff A.: Elastase and emphysema. Current assessment of the protease-antiprotease hypothesis. Am. Rev. Respir. Dis. 1985; 132: 417–411

    PubMed  CAS  Google Scholar 

  3. Snider G.L., Lucey E.C., Stone P.J.: Animal models of emphysema. Am. Rev. Respir. Dis. 1986; 133: 149–169

    PubMed  CAS  Google Scholar 

  4. Snider G.L., Lucey E.C., Christensen T.G., Stone P.J., Calore J.D., Catanese A., Franzblau C.: Emphysema and bronchial secretory cell metaplasia induced in hamsters by human neutrophil products. Am. Rev. Respir. Dis. 1984; 129: 155–160

    PubMed  CAS  Google Scholar 

  5. Lucey E.C., Stone P.J., Ciccolella D.E., Breuer R., Christensen T.G., Thompson R.C., Snider G.L.: Recombinant human leukocyte-protease inhibitor ameliorates human neutrophil elastase induced emphysema and secretory cell metaplasia in the hamster. J. Lab. Clin. Med. 1990; 115: 224–232

    PubMed  CAS  Google Scholar 

  6. Bruce M.C., Ronez L., Kilinger J.D.: Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am. Rev. Respir. Dis. 1985; 132: 529–535

    PubMed  CAS  Google Scholar 

  7. Lee C.T., Fein A.M., Lippmann M., Holtzman H., Kimbel P., Weinbaum G.: Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory-distress syndrome. N. Engl. J. Med. 1981; 304: 192–196

    Article  PubMed  CAS  Google Scholar 

  8. Cochrance C.G., Spragg R.G., Revak S.D., Cohen A.B., McGuire W.W.: The presence of neutrophil elastase and evidence of oxidation activity in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1983; 127: S25 - S27

    Google Scholar 

  9. Powers J.C., Harper J.W.: Inhibitors of serine proteases. In: Barrett A.J., Salvensen G.S. (Eds.). Proteinase inhibitors. Amsterdam/New York, Elsevier Science Publishers, 1986; 55–152

    Google Scholar 

  10. Kettner C.A., Shenvi A.B.: Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G., and chymotrypsin by peptide boronic acids. J. Biol. Chem. 1984; 259: 15106–15114

    PubMed  CAS  Google Scholar 

  11. Trainor D.A.: Synthetic inhibitors of human neutrophil elastase. Trends in Pharmacol. Sci. 1987; 87: 303–307

    Google Scholar 

  12. Hod H., Yasutake A., Minematsu Y., Powers J.C.: Inhibition of human leuckocyte elastase, porcine pancreatic elastase and caphepsin G by peptide ketones. In: Deber C.M., Hruby V.J., Kopple K.D. (Eds.). Peptides: synthesis-structure-function. Proceedings of the ninth american peptide symposium. Pierce Chem. Co., II, 1985; 819–822

    Google Scholar 

  13. Walter J., Bode W.: The x-ray crystal structure analysis of the refined complex formed by bovine trypsin and p-amidinophenylpyruvate at 1.4 A resolution. Hoppe-Seyler’ s Z. Physiol. Chem. 1983; 364: 949–959

    Article  CAS  Google Scholar 

  14. Peet N.P., Brurkhart J.P., Angelastro M.R., Giroux E.L., Mehdi S., Bey P., Kolb M., Neises B., Schirlin D.: Synthesis of peptidyl fluoromethyl ketones and peptidyl alpha-keto esters as inhibitors of porcine pancreatic elastase, human neutrophil elastase, and rat and human neutrophil cathepsin G. J. Med. Chem. 1990; 33: 394–407

    Article  PubMed  CAS  Google Scholar 

  15. Bode W., Wei A-Z., Huber R., Meyer E., Travis J., Neumann S.: X-ray structure of the complex of human leukocyte elastase (PMN elastase) and the third domain of the turkey ovomucoid inhibitor. EMBO J. 1986; 5: 2453–2458

    PubMed  CAS  Google Scholar 

  16. Navia M.A., McKeever B.M., Springer J.P., Lin T-Y., Williams H.R., Ruder E.M., Dorn C.D., Hoogsteen K.: Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 7–11

    Article  PubMed  CAS  Google Scholar 

  17. Oleksyszyn J., Powers J.C.: Irreversible inhibition of serine proteases by peptidyl derivatives of alpha-aminoalkylphosphonate diphenyl esters. Biochem. Biophys. Res. Commun. 1989; 161: 143–149

    Article  PubMed  CAS  Google Scholar 

  18. Oleksyszyn J., Powers J.C.: Irreversible inhibition of serine proteases by peptide derivatives of alpha-aminoalkylphosphonate diphenyl esters. Biochemistry 1991; 30: 485–493

    Article  PubMed  CAS  Google Scholar 

  19. Bartlett P.A., Lamden L.A.: Inhibition of chymotrypsin by phosphonate and phosphonamidate analogs. Bioorg. Chem. 1986; 14: 356–377

    Article  CAS  Google Scholar 

  20. Lamden L.A., Bartlett P.A.: Aminoalkylphosphonofluoridate derivatives: rapid and potentially selective inactivators of serine proteases. Biochem. Biophys. Res. Commun. 1983; 112: 1085 1090

    Google Scholar 

  21. The alpha-aminoalkylphosphonic acids are analogues of natural alpha-amino acids and are designated by the generally accepted three letter abbreviations for the amino acid followed by the superscript P. For example dephenyl alpha-(N-benzyloxycarbonylamino) ethylphosphonate which is related to alanine is abbreviated as Z-AIaP (OPh)2.

    Google Scholar 

  22. Teshima T., Griffin J.C., Powers J.C.: A new class of heterocyclic serine protease inhibitors. Inhibition of human leukocyte elastase, porcine pancreatic elastase, cathepsin G, and bovine chymotrypsin alpha with substituted benzoxazinones, quinazolines, and anthranilates. J. Biol. Chem. 1982; 257: 5085–5091

    PubMed  CAS  Google Scholar 

  23. Krantz A., Spencer R.W., Tam T.F., Thomas E., Copp L.J.: Design of alternate substrate inhibitors of serine protease: synergistic use of alkyl substitution to impede enzyme-catalyzed deacylation. J. Med. Chem. 1987; 30: 589–591

    Article  CAS  Google Scholar 

  24. Krantz A., Spencer R.W., Tam T.F., Liak T.J., Copp L.J., Thomas E.M., Rafferty S.P.: Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of human leukocyte elastase. J. Med. Chem. 1990; 33: 464–479

    Article  PubMed  CAS  Google Scholar 

  25. Doherty J.B., Ashe B.M., Argenbright L.W., Barker P.L., Bonney R.J., Chandler G.O., Dahlgren M.E., Dorn C.P., Finke P.E., Firestone R.A., Fletcher D., Hagmann W.K., Mumford R., O’Grady L., Maycock A.L., Pisano J.M., Shah S.K., Thompson K.R., Zimmerman M.: Cephalosporin antibiotics can be modified to inhibit human leukocyte elastase. Nature 1986; 322: 192–194

    Article  PubMed  CAS  Google Scholar 

  26. Harper J.W., Hemmi K, Powers J.C.: Reaction of serine proteases with substituted isocoumarins: discovery of 3,4-dichloroisocoumarin, a new general mechanism based serine protease inhibitor. Biochemistry 1985; 24: 1831–1841

    Article  PubMed  CAS  Google Scholar 

  27. Harper J.W., Powers J.C.: Reaction of serine proteases with substituted 3-alkoxy-4chloroisocoumarins and 3-alkoxy-7-amino-4-chloroisocoumarins: new reactive mechanism-based inhibitors. Biochemistry 1985; 24: 7200–7213

    Article  PubMed  CAS  Google Scholar 

  28. Powers J.C., Oleksyszyn J., Narasimham S.L., Kam C-M., Radhakrishnan R., Meyer E.F.: Reaction of porcine pancreatic elastase with 7-substituted 3-alkoxy-4-chloroisocoumarins: design of potent inhibitors using the crystal structure of the complex formed with 4-chloro-3ethoxy-7-guanidinoisocoumarin. Biochemistry 1990; 29: 3108–3118

    Article  PubMed  CAS  Google Scholar 

  29. Meyer E.F., Presta L.G., Radhakrishnan R.: Stereospecific reaction of 3-methoxy-4-chloro-7aminoisocoumarin with crystalline porcine pancreatic elastase. J. Am. Chem. Soc. 1985; 107: 4091–4093

    Article  CAS  Google Scholar 

  30. Chow M.M., Meyer E.F., Bode W., Kam C-M., Radhakrishnan R., Vijayalashmi J., Powers J.C.: The 2.2 t1 resolution x-ray crystal structure of the complex formed by reaction of the thrombin inhibitor4-chloro-3-ethoxy-7-guanidinoisocoumarin with trypsin. J. Am. Chem. Soc. 1990; 112: 7783–7789

    Article  CAS  Google Scholar 

  31. Navia M.A., Springer J.P., Lin T-Y., Williams H.R., Firestone R.A., Pisano J.M., Doherty J.B., Finke P.E., Hoogsteen K.: Crystallographic study of a 13-lactam inhibitor complex with elastase at 1.84 A resolution. Nature 1987; 327: 79–82

    Article  PubMed  CAS  Google Scholar 

  32. Bode W., Meyer E., Powers J.C.: Human leukocyte and porcine pancreatic elastase: x-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 1989; 28: 1951–1963

    Article  PubMed  CAS  Google Scholar 

  33. Baici A., Pelloso R., Horler D.: The kinetic mechanism of inhibition of human leukocyte elastase by MR 889, a new cyclic thiolic compound. Biochem. Pharmacol. 1990; 39: 919–924

    Article  PubMed  CAS  Google Scholar 

  34. Luisetti M., Piccioni P.D., Donnini M, Peona V., Pozzi E., Grassi C.: Studies of MR 889, a new synthetic proteinase inhibitor. Biochem. Biophys. Res. Commun. 1989; 165: 568–573

    Article  PubMed  CAS  Google Scholar 

  35. Powers J.C., Bengali Z.H.: Elastase inhibitors for treatment of emphysema. Am. Rev. Respir. Dis. 1986; 134: 1097–1100

    PubMed  CAS  Google Scholar 

  36. Stone P.J., Lucey E.C., Calore J.D., Snider G.L., Franzblau C., Castillo M.J., Powers J.C.: The moderation of elastase-induced emphysema in the hamster by intratracheal pretreatment or posttreatment with succinyl alanyl prolyl valine chloromethyl ketone. Am. Rev. Respir. Dis. 1981; 124: 56–59

    PubMed  CAS  Google Scholar 

  37. Gadek J.E., Klein H.G., Holland P.V., Crystal R.G.: Replacement therapy of alpha 1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance with the alveolar structures of PiZ subjects. J. Clin. Invest. 1981; 68: 1158–1165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London

About this chapter

Cite this chapter

Powers, J.C., Kam, CM., Hori, H., Oleksyszyn, J., Meyer, E.F. (1992). Synthetic Mechanism-Based and Transition-State Inhibitors for Human Neutrophil Elastase. In: Grassi, C., Travis, J., Casali, L., Luisetti, M. (eds) Biochemistry of Pulmonary Emphysema. Current Topics in Rehabilitation. Springer, London. https://doi.org/10.1007/978-1-4471-3771-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3771-9_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3773-3

  • Online ISBN: 978-1-4471-3771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics