Visual Inspection of Fuzzy Clustering Results

  • Frank Klawonn
  • Vera Chekhtman
  • Edgar Janz
Conference paper

Abstract

Clustering is an explorative data analysis method applied to data in order to discover structures or certain groupings in a data set. Therefore, clustering can be seen as an unsupervised classification technique. Fuzzy clustering accepts the fact that the clusters or classes in the data are usually not completely well separated and thus assigns a membership degree between 0 and 1 for each cluster to every datum.

Keywords

Entropy Covariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum PressGoogle Scholar
  2. 2.
    Bezdek JC, Keller J, Krishnapuram R, Pal NR (1999) Fuzzy models and algorithms for pattern recognition and image processing. Kluwer, BostonMATHGoogle Scholar
  3. 3.
    Davé, RN (1991) Characterization and detection of noise in clustering. Pattern Recognition Letters 12: 657–664CrossRefGoogle Scholar
  4. 4.
    Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 11: 773–781CrossRefGoogle Scholar
  5. 5.
    Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis. Wiley, ChichesterMATHGoogle Scholar
  6. 6.
    Krishnapuram R, Keller J (1993) A possibilistic approach to clustering. IEEE Trans. on Fuzzy Systems 1: 98–110CrossRefGoogle Scholar
  7. 7.
    Timm H, Borgelt C, Kruse R (2002) A modification to improve possibilistic cluster analysis. IEEE Intern. Conf. on Fuzzy Systems, Honululu (2002)Google Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Frank Klawonn
    • 1
  • Vera Chekhtman
    • 1
  • Edgar Janz
    • 1
  1. 1.Department of Computer ScienceUniversity of Applied Sciences Braunschweig/WolfenbuettelWolfenbuettelGermany

Personalised recommendations