Advertisement

1-D Parabolic Search Mutation

  • C. Robertson
  • R. B. Fisher
Conference paper

Summary

This document describes a new mutation operator for evolutionary algorithms based on a 1-dimensional optimisation strategy. This provides a directed, rather than random, mutation which can increase the speed of convergence when approaching a minimum. We detail typical comparative results of unimodal and polymodal optimisations with and without the operator.

Keywords

Mutation Operator Premature Convergence Domain Limit Domain Constraint Function Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson C., Fisher R. B., Werghi N., Ashbrook A. P. “An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces”. in Evolutionary Image Analysis, Signal Processing and Telecommunications, Proc. First European workshop on evolutionary computation in image analysis and signal processing (Evo1ASP99). Goteborg, Sweden, pp 1–16, Springer LNCS 1596, May (1999).Google Scholar
  2. 2.
    Robertson C., Fisher R. B., Werghi N., Ashbrook A. P., “An Improved Algorithm to Extract Surfaces from Complete Range Descriptions”, Proc. World Manuf. Conf, WMC’99 (ISMT’99) - Sept., pp 592–598, ICSC Academic Press, Durham (1999)Google Scholar
  3. 3.
    Robertson C., Fisher R. B., Werghi N., Ashbrook A. P., “Object reconstruction by incorporating geometric constraints in reverse engineering”, Computer-Aided Design, Vol 31 (6), pp 363–399, (1999).MATHCrossRefGoogle Scholar
  4. 4.
    Eggert D, Fitzgibbon A., Fisher R. B., “Simultaneous Registration of Multiple Range Views For Use In Reverse Engineering of CAD Models”, Computer Vision and Image Understanding, Vol 69, No 3, pp 253–272, March (1998).Google Scholar
  5. 5.
    Rawlins G. J. E. (ed), Foundations of Genetic Algorithms, Morgan Kaufmann Inc., San Mateo, CA, (1991), pp 3.Google Scholar
  6. 6.
    Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, Third Edition, Springer, (1996).MATHCrossRefGoogle Scholar
  7. 7.
    Fogel D. B., “An Introduction to Simulated Evoutionary Optimization”, in IEEE Transactions on Neural Networks, Vol.5, No.1, January, pp3–14., (1994)Google Scholar
  8. 8.
    Chen K., Parmee I. C., Gane C. R., “Dual Mutation Strategies for Mixed-integer Optimisation in Power Station Design.”, Proceedings of IEEE International Conference on Evolutionary Computation, Indiana University, April, pp. 385–390., (1997)Google Scholar
  9. 9.
    Roy R., Parmee I. C., “An Overview of Evolutionary Computing for Multimodal Function Optimisation”, Proceedings of WSC2. June (1997).Google Scholar
  10. 10.
    Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical Recipes in Fortran. Cambridge University Press, (1992).Google Scholar
  11. 11.
    Yao X. and Liu Y., “Fast evolution strategies,” Control and Cybernetics. 26(3):467496, (1997).Google Scholar
  12. 12.
    Benson K., “Evolving Automatic Target Detection Algorithms theat Logically Combine Decision Spaces”, Proc. British Machine Vision Conference, M. Mirmehdi and B. Thomas (eds), BMVA Press, pp 685., (2000).Google Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • C. Robertson
    • 1
  • R. B. Fisher
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations