Skip to main content

Growth and Remodelling in the Gastrointestinal Tract

  • Chapter
  • 280 Accesses

Abstract

Mechanical forces are a major determinant of tissue behaviour and are likely the single most important factor influencing growth and remodeling of tissue. An understanding of this relationship is important in deciphering how the gastrointestinal tract responds and adapts to changes in the physical environment. The passive elastic properties of the intact organ must be studied since these properties reflect the state of the structural components determining a specific function or malfunction, e.g., the wall stress is modulated by changes in the wall structure due to obstructive diseases (Gregersen et al., 1992; Schulze-Delrieu et al., 1988; Ravinder et al., 1990). Therefore, it is desirable to study the biomechanical and morphological properties of the tissue simultaneously. The literature is relatively sparse in this regard. Gabella (1987; 1984) considered the structural apparatus for force transmission in smooth muscles, and Orberg et al. (1983) described the biaxial orientation of the collagen fibrils and the pattern of uncrimping in response to stress. Gregersen et al. (1992) found, in a partially obstructed model of the opossum oesophagus, a linear relation between the amount of collagen and the wall tension. It is likely that collagen synthesis was stimulated because of dilation and increased wall tension proximal to the site of obstruction in the oesophagus. Collagen may also be a major determinant of the biomechanical properties of the small intestine since large amounts are found in its wall.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Aldewachi HS, Wright NA, Appleton DR, Watson AJ. 1975. The effect of starvation and refeeding on cell population kinetics in the rat small bowel mucosa. J Anat, 119: 105–21

    CAS  PubMed  Google Scholar 

  • Altmann GG. 1972. Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine. Am J Anat, 133: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Arhan P, Devroede G, Danis K, et al. 1978. Viscoelastic properties of the rectal wall in Hirschsprung’s disease. J Clin Invest, 62: 82–7.

    Article  CAS  PubMed  Google Scholar 

  • Armour EP, White JR, DeWitt CC, Corry PM, Martinez A. 1996. Effects of continuous low-dose-rate brachytherapy on the rectum of the rat. Radiat Res, 145: 474–80.

    Article  CAS  PubMed  Google Scholar 

  • Benson MJ, Wingate DL. 1993. Ileus and mechanical obstruction. In: An Illustrated Guide to Gastrointestinal Motility, 2nd edition, ed. Kumar D, Wingate D, pp. 547–66. New York: Churchill Livingstone.

    Google Scholar 

  • Bjorntorp P, Yang Mu. 1982. Refeeding after fasting in the rat: effects on body composition and food efficiency. Am.J Clin Nutr, 36: 444–9.

    CAS  PubMed  Google Scholar 

  • Bornstein P. 1980. Structurally distinct collagen types. Ann Rev Biochem, 49: 957–1003.

    Article  CAS  PubMed  Google Scholar 

  • Bragg LE, Thompson JS, Rikkers LF. 1991. Influence of nutrient delivery on gut structure and function. Nutrition, 7: 237–43.

    CAS  PubMed  Google Scholar 

  • Carlson E, Zukoski CF, Campbell J, Chvapil M. 1977. Morphologic, biophysical, and biochemical consequences of ligation of the common biliary duct in the dog. Am J Pathol, 86: 301–20.

    CAS  PubMed  Google Scholar 

  • Chipman SD, Sweet HO, McBride Jr DJ, et al. 1993. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc Natl Acad Sci USA, 90: 1701–5.

    Article  CAS  PubMed  Google Scholar 

  • Clarke RM. 1975. The time-course of changes in mucosal architecture and epithelial cell production and cell shedding in the small intestine of the rat fed after fasting. JAnat, 120: 321–7.

    CAS  Google Scholar 

  • Cohen S. 1962. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem, 237: 1555–62.

    CAS  PubMed  Google Scholar 

  • Conklin JL, Goyal RK. 1989. Gastrointestinal smooth muscle. In: Gastrointestinal Disease, 4th edition, ed. Sleisenger MH, Fordtran JS. Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Cowan MJ, Crystal RG. 1995. Lung growth after unilateral pneumonectomy: quantitation of collagen synthesis and content: Am Rev Respir Dis, 111: 267–77.

    Google Scholar 

  • de Caestecker JS, Pryde A, Heading RC. 1992. Site and mechanism of pain perception with oesophageal balloon distension and intravenous edrophonium in patients with oesophageal chest pain. Gut, 33: 580–6.

    Article  PubMed  Google Scholar 

  • Denis P, Colin R, Galmiche JP, Geffroy Y, Hecketsweiler P, Lefrancois R, Pasquis P. 1979. Elastic properties of the rectal wall in normal adults and in patients with ulcerative colitis. Gastroenterology, 77: 45–8.

    CAS  PubMed  Google Scholar 

  • Dou Y, Gregersen S, Zhao J, Zhuang FY, Gregersen H. 2002. Effect of refeeding after starvation on biomechanical properties in rat small intestine. J Med Eng Physics, 23: 557–66.

    Article  Google Scholar 

  • Dou Y, Gregersen S, Zhao J, Zhuang FY, Gregersen H. 2002. Morphometric and biomechanical intestinal remodeling induced by fasting in rats. Dig Dis Sci, 47: 1158–68.

    Article  PubMed  Google Scholar 

  • Dowling RH. 1982. Small bowel adaptation and its regulation. Scand J Gastroenterol Suppl, 74: 53–74.

    CAS  PubMed  Google Scholar 

  • Dowling RH, Booth CC. 1967. Structural and functional changes following small intestinal resection in the rat. Clin Sci, 32: 139–49.

    CAS  PubMed  Google Scholar 

  • Duch BU, Andersen HL, Smith J, Kassab GS, Gregersen H. 2002. Structural and mechanical remodeling of the common bile duct after obstruction. Neurogastroenterol Motil, 14: 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Duch BU. 2000. Biomechanical and morphometric properties of the porcine common bile duct. PhD thesis, Denmark, University of Aarhus.

    Google Scholar 

  • Dunn JC, Parungo CP, Fonkalsrud EW, McFadden DW, Ashley SW. 1997. Epidermal growth factor selectively enhances functional enterocyte adaptation after massive small bowel resection. J Surg Res, 67: 90–93.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlam RJ. 1971. Ganglion cell changes in experimental stenosis of the gut. Gut, 12: 393–8.

    Article  Google Scholar 

  • Eifel PJ, Levenback C, Wharton JT, Oswald MJ. 1995. Time course and incidence of late complications in patients treated with radiation therapy for figo stage Ib carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys, 32: 1289–300.

    Article  CAS  PubMed  Google Scholar 

  • Fackler K, Klein L, Hiltner AJ. 1981. Polarizing light microscopy of intestine and its relationship to mechanical behaviour. J Microsc, 124: 305–11.

    Article  CAS  PubMed  Google Scholar 

  • Fung YC, Fronek K, Patitucci P. 1979. Pseudoelasticity of arteries and the choice of mathematical expression. Am J Physiol, 237: 620–31.

    Google Scholar 

  • Fung YC. 1991. What are the residual stresses doing in our blood vessels? Ann Biomed Eng, 19: 237–49.

    Article  CAS  PubMed  Google Scholar 

  • Fung YC. 1993. Biomechanics: Mechanical Properties ofLiving Tissues, 2nd edition. New York: Springer-Verlag.

    Google Scholar 

  • Fung YC. 1998. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag.

    Google Scholar 

  • Gabella G. 1975. Hypertrophy of intestinal smooth muscle. Cell Tiss Res, 163: 199–214.

    CAS  Google Scholar 

  • Gabella G. 1976. Structure of the Autonomic Nervous System. London: Chapman and Hall.

    Book  Google Scholar 

  • Gabella G. 1979. Innervation of the gastrointestinal tract. Int Rev Cytol, 59: 129–93.

    Article  CAS  PubMed  Google Scholar 

  • Gabella G. 1981. On the musculature of the gastrointestinal tract of the guinea pig. Anat Embryol, 163: 135–56.

    Article  Google Scholar 

  • Gabella G. 1984. Hypertrophic smooth muscle. V. Collagen and other extracellular materials. Vascularisation. Cell Tiss Res, 235: 275–83.

    CAS  Google Scholar 

  • Gabella G. 1984. Structural apparatus for force transmission in smooth muscles. Physiol Rev, 64: 455–77.

    CAS  PubMed  Google Scholar 

  • Gabella G. 1987. Structure of muscles and nerves in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract, 2nd edition, ed. Johnson LR, pp. 335–82. New York: Raven Press.

    Google Scholar 

  • Gabella G. 1987. The cross-ply arrangement of collagen fibres in the submucosa of the mammalian small intestine. Cell Tiss Res, 248: 491–7.

    Article  CAS  Google Scholar 

  • Gabella G, Yamey A. 1977. Synthesis of collagen by smooth muscle in the hypertrophic small intestine. Q J Exp Physiol, 62: 257–64.

    CAS  Google Scholar 

  • Ghishan FK, Kikuchi K, Riedel B. 1992. Epidermal growth factor up-regulates intestinal Na+/H+ exchange activity. Proc Soc Exp Biol Med, 201: 289–95.

    CAS  PubMed  Google Scholar 

  • Goodlad RA, Plumb JA, Wright NA. 1988. Epithelial cell proliferation and intestinal absorptive function during starvation and refeeding in the rat. Clin Sci, 74: 301–6.

    CAS  PubMed  Google Scholar 

  • Gregersen H, Giversen IM, Rasmussen LM, Tøttrup A. 1992. Biomechanical wall properties and collagen content in the partially obstructed opossum esophagus. Gastroenterology, 103: 1547–51.

    CAS  PubMed  Google Scholar 

  • Gregersen H, Kassab GS, Fung YC. 2000. The zero-stress state of the gastrointestinal tract: biomechanical and functional implications. Dig Dis Sci, 45: 2271–81

    Article  CAS  PubMed  Google Scholar 

  • Gregersen H, Kassab GS. 1996. Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil, 8: 277–97.

    Article  CAS  PubMed  Google Scholar 

  • Gregersen H, Lee TC, Chien S, Skalak R, Fung YC. 1999. Strain distribution in the layered wall of the esophagus. J Biomech Eng, 121: 442–8.

    Article  CAS  PubMed  Google Scholar 

  • Gregersen H, Lundby, L, Overgaard J. 2002. Early and late effects of irradiation on the morphometry and residual strain of the mouse rectum. Dig Dis Sci, 47: 1472–9.

    Article  PubMed  Google Scholar 

  • Gregersen H, Weis S, McCulloch AD. 2001. Esophageal morphometry and residual strain in a mouse model of osteogenesis imperfecta. Neurogastroenterol Motil, 13: 457–64.

    Article  CAS  PubMed  Google Scholar 

  • Gregory H. 1975. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature, 257: 325–7.

    Article  CAS  PubMed  Google Scholar 

  • Gregory H. 1995. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature, 257: 325–7.

    Article  Google Scholar 

  • Hauer-Jensen M, Poulakos L, Osborne JW. 1990. Intestinal complications following accelerated fractionated X-irradiation. An experimental study in the rat. Acta Oncol, 29: 229–34.

    Article  CAS  PubMed  Google Scholar 

  • Herczel E. 1886. Experimentelle und histologische Untersuchungen über kompensatorische Muskelhypertrofie bei Darmstenosen. Zeitschrift für Klinisches Medizin, 11: 321–41.

    Google Scholar 

  • Jansen C, Ihse I, Axelson. 1997. Epidermal growth factor induces increased mucosal thickness of the small intestine in the mouse. Eur Surg Res, 29: 447–54.

    Article  CAS  PubMed  Google Scholar 

  • Jensen LS, Laurberg S, Andreassen TT. 1989. Endoscopic sclerotherapy of oesophageal varices in rabbits. The long-term effect on oesophageal collagen content and mechanical strength. Scand J Gastroenterol, 24: 613–6.

    Article  CAS  PubMed  Google Scholar 

  • Jensen LS, Laurberg S, Juhl CO, Andreassen TT. 1987. Esophageal collagen content and mechanical strength after endoscopic sclerotherapy of esophageal varices. Scand J Gastroenterol, 22: 743–9.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen CS, Ahrensberg JM, Gregersen H, Flyvberg A. 2001. Tension-strain relation and morphometry of rat small intestine in experimental diabetes. Dig Dis Sci, 46: 960–7.

    Article  PubMed  Google Scholar 

  • Juhl CO, Vinter-Jensen L, Djurhuus JC, Gregersen H, Dajani EZ. 1994. Biomechanical properties of the esophagus damaged by endoscopic sclerotherapy. An impedance planimetric study in mini-pigs. Scand J Gastroenterol, 29: 867–73.

    Article  CAS  PubMed  Google Scholar 

  • Juhl CO, Vinter-Jensen L, Poulsen SS, Ørntoft T, Dajani EZ. 1995. Chronic treatment with epidermal growth factor causes esophageal epithelial hyperplasia in pigs and rats. Dig Dis Sci, 41: 2717–23.

    Article  Google Scholar 

  • Kimmey MB, Martin RW, Haggitt RC, Wang KY, Franklin DW, Silverstein FE. 1989. Histological correlates of gastrointestinal ultrasound images. Gastroenterology, 96: 433–41.

    CAS  PubMed  Google Scholar 

  • Kotler DP, Levine GM, Shiau YF. 1980. Effects of nutrients, endogenous secretions, and fasting on in vitro glucose uptake. Am J Physiol, 238: G219–27.

    CAS  PubMed  Google Scholar 

  • Levin RJ. 1970. The intestinal absorption of some essential and non-essential amino acids in fed and fasting rats. Life Sci, 9: 61–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu CD, Rongione AJ, Shin MS, Ashley SW, McFaden DW. 1996. Epidermal growth factor improves intestinal adaptation during somatostatin administration in vivo. J Surg Res, 63: 163–8.

    Article  CAS  PubMed  Google Scholar 

  • Lundby L, Dall FH, Gregersen H, Overgaard J, Laurberg S. 1999. Distensibility of the mouse rectum: application of impedance planimetry for studying age-related changes. Int J Colorectal Dis, 1: 34–41.

    Article  Google Scholar 

  • Lundby L. 1998. Biomechanical and morphometric evaluation of late radiation-induced changes in the mouse rectum. PhD thesis.

    Google Scholar 

  • Lygidakis NJ. 1984. Incidence and significance of ultrastructural changes in the common bile duct in lithiasis with dilatation of the duct. Acta Chir Scand, 150: 665–8.

    CAS  PubMed  Google Scholar 

  • Martin SG, Stratford MRL, Watfa RR, Miller GG, Murray JC. 1992. Collagen metabolism in the murine colon following X irradiation. Radiat Res, 130: 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Martin SG, Vojnovic B, Murray JC. 1991. Determination of x-ray-induced damage to the murine colon using tissue compliance measurements. Int J Radiat Biol, 59: 503–15.

    Article  CAS  PubMed  Google Scholar 

  • Martin RW, Silverstein FE, Kimmey MB. 1989. A 20-MHz ultrasound system for imaging the intestinal wall. Ultrasound Med Biol, 15: 273–80.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Carson FL, Sharma AK. 1989. Small intestinal morphology in experimental diabetic rats: a stereological study on the effects of an aldose reductase inhibitor (ponalrestat) given with or without conventional insulin therapy. Diabetologia, 32: 649–54.

    Article  CAS  PubMed  Google Scholar 

  • McBride Jr DJ, Choe V, Shapiro JR, Brodsky. 1997. Altered collagen structure in mouse tail tendon lacking the alpha 2(I) chain. J Mol Biol, 270: 275–84.

    Article  CAS  PubMed  Google Scholar 

  • Misof K, Landis WJ, Klaushofer K, Fratzl P. 1997. Collagen from the osteogenesis imperfecta mouse model (OIM) shows reduced resistance against tensile stress. J Clin Invest, 100: 40–5.

    Article  CAS  PubMed  Google Scholar 

  • Nexø E, Olsen PS, Poulsen K. 1984. Exocrine and endocrine secretion of renin and epidermal growth factor from the mouse submandibular glands. Regul Pept, 8: 327–34.

    Article  PubMed  Google Scholar 

  • Nowak TV, Harrington B, Weisbruch JP, Kalbfleish JH. 1990. Structural and functional characteristics of muscle from diabetic rodent small intestine. Am J Physiol, 258: G690–8.

    CAS  PubMed  Google Scholar 

  • Opleta-Madsen K, Hardin J, Gall DG. 1991. Epidermal growth factor upregulates intestinal electrolyte and nutrient transport. Am JPhysiol, 260: 807–14.

    Google Scholar 

  • Orberg J, Baer E, Hiltner A. 1983. Organization of collagen fibers in the intestine. Conn Tiss Res, 11: 285–97.

    Article  CAS  Google Scholar 

  • Orberg JW, Klein L, Hiltner A. 1982. Scanning electron microscopy of collagen fibers in intestine. Conn Tissue Res, 9: 187–93.

    Article  CAS  Google Scholar 

  • Orloff Juhl C, Vinter-Jensen L, Djurhuus JC, Gregersen H, Zapher Dajani E. 1994. Biomechanical properties of the oesophagus damaged by endoscopic sclerotherapy. An impedance planimetric study in mini-pigs. Scand J Gastroenterol, 29: 867–73.

    Article  Google Scholar 

  • Oxlund H, Andreassen TT. 1980. The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. JAnat, 131: 611–20.

    CAS  Google Scholar 

  • Paterson WG, Selucky M, Hynna-Liepert TT. 1991. Effect of intraesophageal location and muscarinic blockade on balloon distension-induced chest pain. Dig Dis Sci, 36: 282–8.

    Article  CAS  PubMed  Google Scholar 

  • Paterson WG. 1991. Neuromuscular mechanisms of esophageal responses at and proximal to a distending balloon. Am J Physiol, 260: G148–55.

    CAS  PubMed  Google Scholar 

  • Pedersen D, Bentzen SM, Overgaard J. 1994. Early and late radiotherapeutic morbidity in 442 consecutive patients with locally advanced carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys, 29: 941–52.

    Article  CAS  PubMed  Google Scholar 

  • Prigent SA, Lemoine NR. 1992. The type 1 (EGFR-related) family of growth factor receptors and their ligands. Prog Growth Factor Res, 4: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Rao R, Porreca F. 1996. Epidermal growth factor protects mouse ideal mucosa from Triton X-100-induced injury. Eur J Pharmacol, 15: 209–12.

    Article  Google Scholar 

  • Ravinder KM, Ren J, McCallum RW, Shaffer HA, Sluss J. 1990. Modulation of feline esophageal contractions by bolus volume and outflow obstruction. Am J Physiol, 100: 853–64.

    Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD. 1994. Stress-dependent finite growth in soft elastic tissues. J Biomech, 27: 455–67.

    Article  CAS  PubMed  Google Scholar 

  • Salloum RM, Stevens BR, Schultz GS, Souba WW. 1993. Regulation of small intestinal glutamine transport by epidermal growth factor. Surgery, 113: 552–9.

    CAS  PubMed  Google Scholar 

  • Schulze-Delrieu K, Brown B, Herman B, Brown CK, Lawrence D, Shirazi S et al. 1995. Preservation of peristaltic reflex in hypertrophied ileum of guinea pig. Am J Physiol, 269: G49–59.

    CAS  PubMed  Google Scholar 

  • Schulze-Delrieu K, Shirazi SS, Sprunger K, Noel S, Tung H. 1988. Functional denervation of the esophagus from experimental obstruction. Gastroenterology, 94: A414.

    Google Scholar 

  • Senn N. 1888. An experimental contribution to intestinal surgery with special reference to the treatment of intestinal obstruction. II:enterectomy. Ann Surg, 7: 99–115.

    Article  CAS  PubMed  Google Scholar 

  • Staritz M, Poralla T, Klose K, et al. 1986. Is the bile duct diameter a reliable parameter to diagnose extrahepatic cholestasis? Relationship between bile duct diameter and bile duct pressure. Digestion, 35: 120–4.

    Article  CAS  PubMed  Google Scholar 

  • Steiner D, Henning R, Lierse W. 1989. Bioconstruction of the extrahepatic biliary duct system in mini-pigs. Comparing normal condition with experimental obstruction. Acta Anat Basel, 136: 159–64.

    Article  CAS  PubMed  Google Scholar 

  • Steiner M, Bourges HR, Freedman LS, Gray SJ. 1968. Effect of starvation on the tissue composition of the small intestine in the rat: Am J Physiol, 215: 75–7.

    CAS  PubMed  Google Scholar 

  • Storkholm JH. 1996. Aspects of biomechanics, morphology, and motility in the normal and the obstructed guinea pig small intestine. PhD thesis, Denmark, University of Aarhus.

    Google Scholar 

  • Storkholm, JH, Villadsen GV, Jensen SL, Gregersen H. 1998. Peristaltic reflex activity and stress in the partially obstructed guinea pig small intestine. Proc 16 th Int Symp Gastrointestinal Motility. Lorne, Australia.

    Google Scholar 

  • Tamou S, Trott KR. 1995. The effects of local X-irradiation on the distensibility of the rectum in rats. Br J Radiol, 68: 64–9.

    Article  CAS  PubMed  Google Scholar 

  • Terry NHA, Denekamp J, Maughan RL. 1983. RBE values for colo-rectal injury after caesium 137 gammaray and neutron irradiation. I. Single doses. Br J Radiol, 56: 257–65.

    Article  CAS  PubMed  Google Scholar 

  • Terry NHA, Denekamp J. 1984. RBE values and repair characteristics for colo-rectal injury after caesium 137 gamma-ray and neutron irradiation. II. Fractionation up to ten doses. Br J Radiol, 57: 617–92.

    Article  CAS  PubMed  Google Scholar 

  • Tung H-N, Schulze-Delrieu K, Shirazi S, Noel S, Xia Q, Cue K. 1991. Hypertrophic smooth muscle in the partially obstructed opossum esophagus. The model: histological and ultrastructural observations. Gastroenterology, 100: 853–64.

    CAS  PubMed  Google Scholar 

  • Villadsen GE, Petersen JAK, Vinter-Jensen L, Juhl CO, Gregersen H. 1995. Impedance planimetric characterisation of the normal and diseased oesophagus. Surg Res Comm, 17: 225–42.

    Google Scholar 

  • Vinter-Jensen L, Duch BU, Pedersen JAK, Ryslev A, Gregersen H. 1996. Systemic treatment with epidermal growth factor in the rat. Biomechanical properties of the growing small intestine. Regul Pept, 61: 135–42.

    Article  CAS  PubMed  Google Scholar 

  • Vinter-Jensen L, Juhl CO, Eika B, Gregersen H, Dajani EZ. 1995. Epidermal growth factor attenuates the sclerotherapy-induced biomechanical properties of the esophagus. An experimental study in mini-pig. Scand J Gastroenterol, 30: 614–19.

    Article  CAS  PubMed  Google Scholar 

  • Vinter-Jensen L. 1999. Pharmacological effects of epidermal growth factor (EGF) with focus on the urinary and gastrointestinal tracts. APMIS, 107 (Suppl 93): 1–42.

    Article  Google Scholar 

  • Widmark A, Fransson P, Tavelin B. 1994. Self-assessment questionnaire for evaluating urinary and intestinal late side effects after pelvic radiotherapy in patients with prostate cancer compared with an agematched control population. Cancer, 74: 2520–32.

    Article  CAS  PubMed  Google Scholar 

  • Williams D, Thompson DG, Heggie L, Bancewitz J. 1993. Responses of the human esophaus to experimental intraluminal distension. Am J Physiol, 265: G196–203.

    CAS  PubMed  Google Scholar 

  • Williamson RC. 1982. Intestinal adaptation: factors that influence morphology. Scand J Gastroenterol (Suppl.), 74: 21–9.

    CAS  Google Scholar 

  • Wilson JH, Lamberts SW. 1979. Nitrogen balance in obese patients receiving a very low calorie liquid formula diet. Am J Clin Nutr, 32: 1612–16.

    CAS  PubMed  Google Scholar 

  • Yamauchi K, Kamisoyama H, Isshiki Y. 1996. Effects of fasting and refeeding on structures of the intestinal villi and epithelial cells in White Leghorn hens. Br Poult Sci, 37: 909–21.

    Article  CAS  PubMed  Google Scholar 

  • Yeoh E, Sun WM, Russo A, Ibanez L, Horowitz M. 1996. A retrospective study of the effects of pelvic irradiation for gynecological cancer on anorectal function. Int JRadiat Oncol Biol Phys, 35: 1003–10.

    Article  CAS  Google Scholar 

  • Zeller PJ, Skalak TC. 1998. Contribution of individual structural components in determining the zerostress state in small arteries. J Vasc Res, 35: 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler TR, Mantell MP, Chow JC, Rombeau JL, Smith RJ. 1998. Intestinal adaptation after extensive small bowel resection: differential changes in growth and insulin-like growth factor system messenger ribonucleic acids in jejunum and ileum. Endocrinology, 139: 3119–26.

    CAS  PubMed  Google Scholar 

  • Zoubi SA, Williams MD, Mayhew TM, et al. 1995. Number and ultrastructure of epithelial cells in crypts and villi along the streptozotocin-diabetic small intestine: a quantitative study on the effects of insulin and aldose reductase inhibition. Virchows Arch, 427 (2): 187–93

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London

About this chapter

Cite this chapter

Gregersen, H. (2003). Growth and Remodelling in the Gastrointestinal Tract. In: Biomechanics of the Gastrointestinal Tract. Springer, London. https://doi.org/10.1007/978-1-4471-3742-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3742-9_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-880-5

  • Online ISBN: 978-1-4471-3742-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics