Skip to main content

The Zero-stress State of the Gastrointestinal Tract. The Concept of Residual Stress and Strain

  • Chapter
  • 292 Accesses

Abstract

The function of the gastrointestinal tract is to propel food by peristaltic motion, which is a result of the interaction of the tissue forces in the wall and the hydrodynamic forces in the food bolus. To understand the tissue forces in the gastrointestinal tract, it is necessary to know the stress-strain relationships of the tissues. The stress-strain relationships must be measured with reference to the zero-stress state (the condition where neither external nor internal forces deform the tissue). The basic equations for computing stress and strain are given in Chapter 3. The zerostress state of the tissue constitutes the standard state for describing tissue morphology because the tissue is not deformed by internal and external forces. The residual stress and strain cannot be assessed if the zero-stress state is not known, hence the determination of the zero-stress state of gastrointestinal tissue is the first step in the determination of the mechanical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Assentoft JE, Gregersen H, O’Brien WD. 2000. Determination of biomechanical properties in the guinea pig esophagus by means of high-frequency ultrasound and impedance planimetry. Dig Dis Sci, 45: 1260–66.

    Article  PubMed  CAS  Google Scholar 

  • Assentoft JE, Gregersen H, O’Brien WD. 2001. Propagation speed of sound assessment in the layers of the guinea-pig esophagus in vitro by means of acoustic microscopy. Ultrasonics, 39: 263–8.

    Article  PubMed  CAS  Google Scholar 

  • Chuong CJ, Fung YC. 1986. On residual stresses in arteries. J Biomech Eng, 108: 189–99.

    Article  PubMed  CAS  Google Scholar 

  • Dou Y, Zhao J, Gregersen H. 2002. Morphology and stress-strain distribution along small intestine in the rat. J Biomech Eng, in press.

    Google Scholar 

  • Fung YC, Liu SQ. 1992. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am J Physiol, 262: H544–52.

    PubMed  CAS  Google Scholar 

  • Fung YC. 1983. What principle governs the stress distribution in living organs? In: Biomechanics in China, Japan and USA, ed. Fung YC, Fukada E, Junjian W, pp. 1–13. Beijing, China: Science.

    Google Scholar 

  • Fung YC. 1990. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag.

    Google Scholar 

  • Fung YC. 1993. Biomechanics: Mechanical Properties of Living Tissue. New York: Springer-Verlag.

    Google Scholar 

  • Gabella G. 1987. Structure of muscles and nerves in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract, ed. Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH, pp. 335–82. New York: Raven Press.

    Google Scholar 

  • Gao C, Gregersen H. 2000. Biomechanical and morphological properties in rat large intestine. J Biomech, 33: 1089–97.

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Zhao J, Gregersen H. 2000. Histomorphometry and strain distribution in pig duodenum with reference to the zero-stress state. Dig Dis Sci, 45: 1500–8.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen H, Kassab GS, Fung YC. 2000. The zero-stress state of the gastrointestinal tract: Biomechanical and functional implications. Dig Dis Sci, 45: 2271–81.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen H, Kassab GS, Pallencoea E, Lee C, Chien S, Skalak R, Fung YC. 1997. Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state. Am J Physiol, 273: G865–74.

    PubMed  CAS  Google Scholar 

  • Gregersen H, Kassab GS. 1996. Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil, 8: 277–97.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen H, Lee C, Chien S, Skalak R, Fung YC. 1999. Strain distribution in the layered wall of the esophagus. J Biomed Eng, 121: 442–8.

    CAS  Google Scholar 

  • Gregersen H, Weis S, McCulloch AD. 2001. Esophageal morphometry and residual strain in a mouse model of osteogenesis imperfecta. Neurogastroenterol Motil, 13: 457–64.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen H. 2000. Residual strain in the gastrointestinal tract: a new concept. Neurogastroenterol Motil, 12: 411–14.

    Article  PubMed  CAS  Google Scholar 

  • Grundy, D. 1993. Mechanoreceptors in the gastrointestinal tract. J Smooth Muscle Res, 29: 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Han HC, Fung YC. 1991. Residual strains in porcine and canine trachea. J Biomech, 24: 307–15.

    Article  PubMed  CAS  Google Scholar 

  • Han HC, Fung YC. 1996. Direct measurement of transverse residual strains in aorta. Am J Physiol, 270: H750–9.

    PubMed  CAS  Google Scholar 

  • Han HC, Fung YC. 1991. Species difference of the zero-stress state of aorta: pig vs. rat. J Biomech Eng, 113: 446–51.

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Gregersen H. 2001. Regional distribution of axial strain and circumferential residual strain in the layered rabbit oesophagus. J Biomech, 34: 225–33.

    Article  PubMed  CAS  Google Scholar 

  • Omens JH. 1988. Left ventricular strain in the no-load state due to the existence of residual stress. PhD thesis, Department of Bioengineering, University of California, San Diego.

    Google Scholar 

  • Rachev A. 1997. Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J Biomechanics, 30: 819–27.

    Article  CAS  Google Scholar 

  • Rodriquez EK, Hoger A, McCulloch AD. 1994. Stress-dependent finite growth in soft elastic tissues. J Biomech, 27: 455–67.

    Article  Google Scholar 

  • Vaishnav RN, Vossoughi J. 1983. Estimation of residual strains in aortic segments. In: Biomedical Engineering IL Recent Developments., ed. Hall CW, pp. 330–3. New York: Pergamon Press.

    Google Scholar 

  • Vaishnav RN, Vossoughi J. 1987. Residual stress and strain — in aortic segments. J Biomech, 20: 235–9.

    Article  PubMed  CAS  Google Scholar 

  • Vossoughi J, Weizsacker HE, Vaishnav RM. 1985. Variation of aortic geometry in various animal species. Biomedizinische Technik, 30: 48–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London

About this chapter

Cite this chapter

Gregersen, H. (2003). The Zero-stress State of the Gastrointestinal Tract. The Concept of Residual Stress and Strain. In: Biomechanics of the Gastrointestinal Tract. Springer, London. https://doi.org/10.1007/978-1-4471-3742-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3742-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-880-5

  • Online ISBN: 978-1-4471-3742-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics