Advertisement

Gastrointestinal Smooth Muscle Mechanical Behaviour and Neural Circuits

  • Hans Gregersen

Abstract

The motor function of the gastrointestinal tract remains an empirically realised activity, incomprehensible and unpredictable to a high degree in comparison to other areas of systemic physiology. A useful scheme of the working organisation of the whole system could provide a theory to be used both to interpret the variety of normal or usual behaviours and to predict responses to exceptional conditions. Our ignorance about gastrointestinal motor physiology allows only the most superficial interpretations and predictions in health and disease. The empiricism surrounding gastrointestinal motility derives from the complexity of the biological and the physical processes, both the muscle and the mechanics. The peristaltic transport of material in the gastrointestinal tract is a neuromuscular function affected by a number of factors. The nervous system controls the twitch topology, frequency and time sequence. The intrinsic muscle mechanics, with its length-tension-velocity characteristics, complements the nervous function.

Keywords

Irritable Bowel Syndrome Neural Circuit Phasic Contraction Tonic Contraction Passive Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Accarino, AM, Azpiroz, F, Malagelada, J-R. 1992. Symptomatic responses to stimulation of sensory pathways in the jejunum. Am J Physiol, 263, G673–7.PubMedGoogle Scholar
  2. Akervall, S, Fasth, S, Nordgren, S. 1989. Rectal reservoir and sensory function studies by graded isobaric distension in normal man. Gut, 30, 496–502.PubMedGoogle Scholar
  3. Almy, TP. 1989. The gastroenterologist and the graying of America. Am J Gastroenterol, 84, 464–8PubMedGoogle Scholar
  4. Anonymous. 1980. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum, 23, 581–90.Google Scholar
  5. Anuras, S, Cooke, AR, Christensen, J. 1974. An inhibitory innervation at the gastroduodenal junction. J Clin Invest, 54, 529–35.PubMedGoogle Scholar
  6. Arendt-Nielsen L, Drewes AM, Hansen JB, Tage-Jensen U. 1997. Plasticity of gut pain in man: an experimental investigation using short and long duration transmucosal electrical stimulation. Pain, 69: 255–62.PubMedGoogle Scholar
  7. Azpiroz F, Malagelada J-R. 1985. Intestinal control of gastric tone. Am J Physiol, 249: G501–9.PubMedGoogle Scholar
  8. Azpiroz F, Malagelada J-R. 1985. Physiological variations in canine gastric tone measured by an electronic barostat. Am J Physiol, 248: G229–37.PubMedGoogle Scholar
  9. Azpiroz F, Malagelada J-R. 1990. Isobaric intestinal distension in humans: sensorial relay and reflex gastric relaxation. Am J Physiol, 258: G202–7.PubMedGoogle Scholar
  10. Azpiroz F, Malagelada J-R. 1990. Perception and reflex relaxation of the stomach in response to gut distension. Gastroenterology, 98: 1193–8.PubMedGoogle Scholar
  11. Balis GU, Monroe RR. 1964. The pharmacology of chloralose. Psychopharmacologia, 6: 1–30.PubMedGoogle Scholar
  12. Ballantyne GH, Longo WE, Savoca PE, Adrian TE, Vukasin AP, Bilchik AJ, Sussman J, Modlin IM. 1989. Deoxycholate-stimulated release of peptide YY from the isolated perfused rabbit left colon. Am J Physiol, 257:G715-G724.PubMedGoogle Scholar
  13. Barbee KA, Macarak EJ, Thibault LE. 1994. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Ann Biomed Eng, 22: 14–22.PubMedGoogle Scholar
  14. Barthó L, Holzer P, Donnerer J, Lembeck F. 1982. Effects of substance P, cholecystokinin octapeptide, bombesin, and neurotensin on the peristaltic reflex of the guinea-pig ileum in the absence and in the presence of atropine. Naunyn-Schmiedeberg’s Arch Pharmacol, 321: 321–8.Google Scholar
  15. Bartho L, Holzer P, Donnerer J, Lembeck F. 1982. Evidence for the involvement of substance P in the atropine-resistant peristalsis of the guinea-pig ileum. Neurosci Lett, 32: 69–74.PubMedGoogle Scholar
  16. Bayliss VM, Starling EH. 1901. The movements and innervation of the small intestine. J Physiol, 26: 125–38.PubMedGoogle Scholar
  17. Bayliss WM, Starling EH. 1899. The movements and innervation of the small intestine. J Physiol, 24: 99–143.PubMedGoogle Scholar
  18. Beleslin DB, Terzic B, Samardzic R. 1987. The effect of leucine-enkephalin on the peristaltic reflex of the isolated guinea-pig ileum. Acta Physiol Hung, 69: 105–14.PubMedGoogle Scholar
  19. Bell AM, Pemberton JH, Hanson RB, Zinsmeister AR. 1991. Variations in muscle tone of the human rectum: recordings with an electromechanical barostat. Am J Physiol, 260: G17–25.PubMedGoogle Scholar
  20. Bennett A, Eley KG, Stockley HL. 1976. Inhibition of peristalsis in guinea-pig isolated ileum and colon by drugs that block prostaglandin synthesis. Br J Pharmacol, 57: 335–40.PubMedGoogle Scholar
  21. Bernstein CN, Niaze N, Robert M et al. 1996. Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain, 66: 151–61.PubMedGoogle Scholar
  22. Brasseur JG. 1993. Mechanical studies of the esophageal function. Dysphagia, 8: 384–6.PubMedGoogle Scholar
  23. Bülbring E, Lin RCY, Schofield G. 1958. An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol, 43: 26–37.Google Scholar
  24. Cervero F. 1992. Sensory innervation of the viscera: Peripheral basis of visceral pain. Physiol Rev, 74: 95–131.Google Scholar
  25. Chamley-Campbell J, Campbell GR, Ross R. 1979. The smooth muscle cell in culture. Physiol Rev, 59: 1–61.PubMedGoogle Scholar
  26. Chernish SM, Miller RE, Rosenak BD, Scholz NE. 1972. Hypotonic duodenography with the use of glucagon. Gastroenterology, 63: 392–8.PubMedGoogle Scholar
  27. Christensen J, Conklin JL. 1973. Studies on the origin of the distinctive mechanics of smooth muscle at the esophagogastric junction. In: Proc Fourth International Symposium on Gastrointestinal Motility. pp. 63–71. Banff, Alberta, Canada. September.Google Scholar
  28. Christensen J, Freeman BW, Miller JK. 1973. Some physiological characteristics of the esophagogastric junction in the opossum. Gastroenterology, 64: 1119–25.PubMedGoogle Scholar
  29. Christensen J, Glover JR, Macagno EO, Singerman RB, Weisbrodt NW. 1971. Statistics of contractions at a point in the human duodenum. Am J Physiol, 221: 1818–23.PubMedGoogle Scholar
  30. Christensen J, Roberts RL. 1983. Differences between esophageal body and lower esophageal sphincter in mitochondria of smooth muscle in opossum. Gastroenterology, 85: 650–6.PubMedGoogle Scholar
  31. Christensen J, Torres EI. 1975. Three layers of the opossum stomach. Response to nerve stimulation. Gastroenterology, 69: 641–8.PubMedGoogle Scholar
  32. Christensen J. 1970. Pharmacological identification of the lower esophageal sphincter. J Clin Invest, 49: 681–91.PubMedGoogle Scholar
  33. Christensen J. 1982. Oxygen dependence of contractions in esophageal and gastric pyloric and ileocecal muscle of opossum. Proc Soc Exp Biol Med, 170: 194–202.PubMedGoogle Scholar
  34. Christensen, J. 1994. Defining the irritable bowel syndrome. Perspect Biol Med, 38: 21–35.PubMedGoogle Scholar
  35. Christensen, J. 1994. The motility of the colon. In: Physiology of the Gastrointestinal Tract, 3rd edition, ed. Johnson LR, Alpers DH, Christensen, J, Jacobson, ED, Walsh, JH, pp. 991–1024. New York: Raven Press.Google Scholar
  36. Conklin J, Goyal RK. 1989. Gastrointestinal smooth muscle. In: Gastrointestinal Disease, 4th edition, ed. Sleisenger MH, Fordtran JS, chapter 3. Philadelphia, PA: W.B Saunders Company.Google Scholar
  37. Conklin JL, Christensen J. 1975. Local specialization at ileocecal junction of the cat and opossum. Am J Physiol, 228: 1075–81.PubMedGoogle Scholar
  38. Conklin JL, Christensen J. 1994. Motor functions of the pharynx and esophagus. In: Physiology of the Gastrointestinal Tract, 3rd edition, ed. Johnson LR, Alpers DH, Christensen, J, Jacobson, ED, Walsh, JH, pp. 903–28. New York: Raven Press.Google Scholar
  39. Cook IJ. 1998. Colon and anorectum: constipation, urgency, pain syndromes. Clinical physiology. In: Functional Disorders of the Gut, ed. Phillips SF, Wingate DL, pp. 269–97. London: Churchill Livingstone.Google Scholar
  40. Costa M, Furness JB. 1976. The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn-Schmiedeberg’s Arch Pharmacol, 294: 47–60.Google Scholar
  41. Dartsch PC, Hammerle H, Betz E. 1986. Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates, Acta Anat, 125: 108–13.PubMedGoogle Scholar
  42. de Caestecker JS, Pryde A, Heading RC. 1992. Site and mechanism of pain perception with oesophageal balloon distension and intravenous edrophonium in patients with oesophageal chest pain. Gut, 33: 580–6.PubMedGoogle Scholar
  43. De Ponti F, Azpiroz F, Malagelada J-R. 1987. Reflex gastric relaxation in response to distension of the duodenum. Am J Physiol, 252: G595–601.PubMedGoogle Scholar
  44. Diamant B, Picazo J. 1983. Spasmolytic action and clinical use of glucagon. In: Lefebre (ed.) Handbook of Experimental Pharmacology. pp. 614–43. Berlin: Springer-Verlag.Google Scholar
  45. Dobrin PB. 1978. Mechanical properties of arteries. Physiol Rev, 58: 397–460.PubMedGoogle Scholar
  46. Donnerer J, Barthó L, Holzer P, Lembech F. 1984. Intestinal peristalsis associated with release of immunoreactive substance P. Neuroscience, 11: 913–18.PubMedGoogle Scholar
  47. Donnerer J, Holzer P, Lembeck F. 1984. Release of dynorphin, somatostatin and substance P from the vascularly perfused small intestine of the guinea-pig during peristalsis. Br J Pharmacol, 83: 919–25.PubMedGoogle Scholar
  48. Drewes AM, Arendt-Nielsen L, Jensen JH, Hansen JB, Krarup HB, Tage-Jensen U. 1997. Experimental pain in the stomach: a model with clinical significance. Gut, 41: 753–7.PubMedGoogle Scholar
  49. Ehrlein H-J, Scheemann M, Siegle M-L. 1987. Motor patterns of small intestine determined by closely spaced extraluminal transducers and videofluoroscopy. Am J Physiol, 253: G259–67.PubMedGoogle Scholar
  50. Elbrønd H, Tøttrup A, Forman A. 1991. Mechanical properties of isolated smooth muscle from rabbit sphincter of oddi and duodenum. Scand J Gastroenterol, 26: 289–94.PubMedGoogle Scholar
  51. Fackler K, Klein L, Hiltner A. 1981. Polarizing light microscopy of intestine and its relationship to mechanical behaviour. J Microscopy, 124: 305–11.Google Scholar
  52. Faithfull NS. 1987. Fluorocarbons. Current status and future applications. Anaesthesia, 42: 234–42.PubMedGoogle Scholar
  53. Fass J, Silny J, Braun J, Heindrichs U, Dreuw B, Schumpelick V, Rau G. 1989. Ein neues verfahren zur quantitativen bestimmung oesophagealer motilitätsmuster mittels einer vielfachen impedanzmessung. In: Chirurgiches forum 1989f. experim. u. kliniche forschung, ed. Hamelmann et al. Berlin: SpringerVerlag.Google Scholar
  54. Fisher MA, Hendrix TR, Hunt JN, Murrils AJ. 1978. Relation between volume swallowed and velocity of the bolus ejected from the pharynx into the esophagus. Gastroenterology, 74: 1238–40.PubMedGoogle Scholar
  55. Fung YC, Yih CS. 1968. Peristaltic transport. J Applied Mechanics, 35: 669–75.Google Scholar
  56. Fung YC. 1981. Biomechanics. Mechanical Properties of Living Tissues. New York: Springer-Verllag.Google Scholar
  57. Furness JB, Costa M. 1987. The Enteric Nervous System. pp. 207–38. New York: Churchill Livingstone.Google Scholar
  58. Furst DC, Clements PJ, Saab M, Sterz MG. 1984. Clinical and serological comparison of 17 chronic, progressive systemic sclerosis (PSS) and 17 CREST syndrome patients matched for sex, age, and disease duration. Ann Rheum Dis, 43: 794–801.PubMedGoogle Scholar
  59. Gabella G. 1976. Structure of the Autonomic Nervous System. London: Chapman and Hall.Google Scholar
  60. Gabella G. 1987. Structure of muscles and nerves in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract. ed. Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH, pp. 335–82. New York: Raven Press.Google Scholar
  61. Ginzel KH. 1959. Investigations concerning the initiation of the peristaltic reflex in the guinea-pig ileum. J Physiol, 148: 75–6.Google Scholar
  62. Gonzalez M, Mearin F, Vasconez C, Armengol JR, Malagelada JR. 1997. Oesophageal tone in patients with achalasia. Gut, 41: 291–6.PubMedGoogle Scholar
  63. Graham MF, Diegelmann RF, Elson CO, Bitar KN, Ehrlich HP. 1984. Isolation and culture of human intestinal smooth muscle cells, Proceedings of the Society for the Experimental Biology and Medicine, 176: 503–7.Google Scholar
  64. Gregersen H, Barlow J, Thompson DG. 1999. Development of a computer-controlled tensiometer for realtime measurements of tension in tubular organs. Neurogastroenterol Motil, 11: 109–18.PubMedGoogle Scholar
  65. Gregersen H, Christensen J. 2000. Gastrointestinal tone. Neurogastroenterol Motil, 12: 501–8.PubMedGoogle Scholar
  66. Gregersen H, Emery J, McCulloch AD. 1998. History-dependent mechanical behavior of the guinea-pig small intestine. Ann Biomed Eng, 26: 1–9.Google Scholar
  67. Gregersen H, Giversen IM, Rasmussen LM, Tøttrup A. 1992. Biomechanical wall properties and collagen content in the partially obstructed opossum esophagus. Gastroenterology, 103: 1547–51.PubMedGoogle Scholar
  68. Gregersen H, Jørgensen CS, Dall FH. 1992. Biomechanical wall properties in the isolated perfused porcine duodenum. An experimental study using impedance planimetry. J Gastrointest Motil, 4: 125–35.Google Scholar
  69. Gregersen H, Jørgensen CS, Dall FH. 1992. Spontaneous and evoked motility in the isolated perfused porcine duodenum. J Appl Physiol, 73: 9–19.PubMedGoogle Scholar
  70. Gregersen H, Kassab G, Pallencaoe E, Lee C, Chien S, Skalak R, Fung YC. 1997. Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state. Am J Physiol, 273: G865–74.PubMedGoogle Scholar
  71. Gregersen H, Kassab GS. 1996. Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil, 8: 277–97.PubMedGoogle Scholar
  72. Gregersen H, Kraglund K, Djurhuus JC. 1990. Variations in duodenal cross-sectional area during the interdigestive motility complex. Am J Physiol, 259: G26–31.PubMedGoogle Scholar
  73. Gregersen H, Lee C, Chien S, Skalak R, Fung YC. 1999. Strain distribution in the layered wall of the esophagus. J Biomed Eng, 121: 442–8.Google Scholar
  74. Gregersen H, Orvar K, Christensen J. 1992. Biomechanical wall properties and tone during phase I and phase II of the MMC. Am J Physiol, 263: G795–801.PubMedGoogle Scholar
  75. Gregersen H, Vinter-Jensen L, Juhl CO, Dajani EZ. 1996. Impedance planimetric characterization of the distal oesophagus in the Goettingen minipig. J Biomech, 29: 63–8.PubMedGoogle Scholar
  76. Grundy D., Scratcherd T. 1990. Sensory afferents from the gastrointestinal tract. Handbook of Physiology, 1: 593–620.Google Scholar
  77. Grundy, D. 1993. Mechanoreceptors in the gastrointestinal tract. J Smooth Muscle Res, 29: 37–46.PubMedGoogle Scholar
  78. Gustavsson S, Tucker R. 1988. Manometry. In: An Illustrated Guide to Gastrointestinal Motility. ed. Kumar D, Gustavsson S, pp. 67–76. New York: John Wiley & Sons.Google Scholar
  79. Hauss WH, Kreuziger H, Asteroth H. 1949. Uber die reizung der pressorezeptoren im sinus caroticus beim hund. Z Kreislaufforsch, 38: 28–33.Google Scholar
  80. Hems R, Ross BD, Berry MN, Krebs HA. 1966. Gluconeogenesis in the perfused rat liver. J Biochem, 101: 284–9.Google Scholar
  81. Hill AV. 1970. First and Last Experiments in Muscle Mechanics. Cambridge University Press.Google Scholar
  82. Hill JR, Kelley ML, Schlegel JF, Code CF. 1960. Pressure profile of the rectum and anus of healthy persons. Dis Colon Rectum, 3: 203–9.PubMedGoogle Scholar
  83. Holst JJ, Jensen SL, Knuhtsen S, Nielsen OV, Rehfeld JE 1983. Effect of vagus, gastric inhibitory polypeptide, and HC1 on gastrin and somatostatin release from perfused pig antrum. Am J Physiol, 244: G515–22.PubMedGoogle Scholar
  84. Holst JJ, Jensen SL, Nielsen OV, Schwartz TW. 1980. Oxygen supply, oxygen consumption, and endocrine and exocrine secretions of the isolated, perfused, porcine pancreas. Acta Physiol Scand, 109: 7–13.PubMedGoogle Scholar
  85. Holst JJ, Lauritsen K, Jensen SL, Nielsen OV, Schaffalitsky de Muckadell OB. 1981. Secretin release from the isolated vascularly perfused pig duodenum. J Physiol, 318: 327–37.PubMedGoogle Scholar
  86. Holst JJ, Schaffalitzky de Muckadell OB, Fahrenkrug J, Jensen SL, Nielsen OV, Schwartz TW. 1981. Nervous control of pancreatic endocrine secretion in pigs. Acta Physiol Scand, 111: 15–22.PubMedGoogle Scholar
  87. Holzer P & Lembeck F. 1979. Effect of neuropeptides on the efficiency of the peristaltic reflex. NaunynSchmiedeberg’s Arch Pharmacol, 307: 257–64.Google Scholar
  88. Holzer P. 1989. Ascending enteric reflex: Multiple neurotransmitter systems and interaction. Am J Physiol, 256: G540–5.PubMedGoogle Scholar
  89. Hukuhara T, Fukuda H. 1965. The motility of the isolated guinea pig small intestine. Jpn J Physiol, 15: 125–39.Google Scholar
  90. Hukuhara T, Fukuda H. 1968. The electrical activity of guinea-pig small intestine with special reference to the slow wave. Jpn J Physiol, 18: 71–86.PubMedGoogle Scholar
  91. Hukuhara T, Masuda K, Kinose S. 1936. Über das Gesetz Des Darmes. Pflügers Arch, 237: 619.Google Scholar
  92. Hukuhara T, Nakayama S, Nanba R. 1960. Locality of receptors concerned with the intestino-intestinal extrinsic and intestinal muscular intrinsic reflexes. Jpn J Physiol, 10: 420–26.Google Scholar
  93. Hung CT, Williams JL. 1994. A method for introducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates. J Biomech, 27: 227–32.PubMedGoogle Scholar
  94. Iggo A. 1957. Gastro-intestinal tension receptors with un-myelinated afferent fibres in the vagus of the cat. Q J Exp Physiol, 42: 130–43.Google Scholar
  95. Jensen SL, Fahrenkrug J, Holst JJ, Nielsen OV, Schaffalitzky de Muckadell OB. 1978. Secretory effects of VIP on isolated perfused porcine pancreas. Am J Physiol, 235: E387–91.PubMedGoogle Scholar
  96. Jørgensen CJ, Gregersen H, Dall FH. 1992. A new method for measurement of stress-strain relations of the small intestine in vivo. J Gastrointest Motil, 4: 225.Google Scholar
  97. Jørgensen CS, Dall FH, Jensen SL, Storkholm J, Gregersen H. 1991. Elastic properties of the isolated perfused porcine duodenum. Dig Dis, 9: 399–405.Google Scholar
  98. Karim OMA, Pienta K, Seki N, Mostwin JL. 1992. Stretch-mediated visceral smooth muscle growth in vitro. Am J Physiol, 262: R895–900.PubMedGoogle Scholar
  99. Katz S.1993. Gastrointestinaldisease ofthe elderly:Introductionto the series. PracticalGastroenterology, 17:9.Google Scholar
  100. Kavin H, Levin NW, Stanley MM. 1967. Isolated perfused rat small bowel-technic, studies of viability, glucose absorption. J Applied Physiol, 22: 604–11.Google Scholar
  101. Keane FB, DiMagno EP, Dozois RR, Go VLW. 1980. Relationships among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancratic polypeptide, and motilin. Gastroenterology, 78: 310–16.PubMedGoogle Scholar
  102. Kendall GPN, Thompson DG, Day SJ et al. 1990. Inter-and intraindividual variation in pressure volume relations of the rectum in normal subjects and patients with the irritable bowel syndrome. Gut, 31: 1062–8.PubMedGoogle Scholar
  103. Kerlin P, Zinsmeister A, Phillips S. 1982. Relationship of motility to flow of contents in the human small intestine. Gastroenterology, 82: 701–6.PubMedGoogle Scholar
  104. Kosterlitz HW, Lees GM. 1964. Pharmacological analysis of intrinsic intestinal reflexes. Pharmacol Rev, 16: 301–39.PubMedGoogle Scholar
  105. Kosterlitz HW, Robinson JA. 1959. Reflex contractions of the longitudinal muscle coat of the isolated guinea-pig ileum. J Physiol, 146: 369–79.PubMedGoogle Scholar
  106. Kromer W, Pretzlaff W. 1979. In vitro evidence for the participation of intestinal opioids in the control of peristalsis in the guinea pig small intestine. Naunyn-Schmiedeberg’s Arch Pharmacol, 309: 153–7.Google Scholar
  107. Leek BF. 1977. Abdominal and pelvic visceral receptors. Br Med Bull, 33: 163–8.PubMedGoogle Scholar
  108. Lembo T, Munakata J, Mertz H, Niazi N, Kodler A, Nikas V, Mayer EA. 1994. Evidence for the hypersensitivity of lumbar splancnic afferents in irritable bowel syndrome. Gastroenterology, 107: 1686–96.PubMedGoogle Scholar
  109. Li L, Li Z, Hou HS, Wang HZ, Wang LY. 1990. Sensory nerve endings in puborectalis and anal region: normal findings in the newborn and changes in anorectal anomalies. J Pediat Surg, 25: 658–64.PubMedGoogle Scholar
  110. Li M, Brasseur JG, Kern MK, et al. 1992. Viscosity measurements of barium sulfate mixtures for use in motility studies of the pharynx and esophagus. Dysphagia, 7: 17–30.PubMedGoogle Scholar
  111. Li M, Brasseur JG. 1993. Non-steady peristaltic transport in finite-length tubes. J Fluid Mech, 248: 129–51.Google Scholar
  112. Liu SQ, Fung YC. 1998. Changes in the organization of the smooth muscle cells in rat vein grafts. Ann Biomed Eng, 26: 86–95.PubMedGoogle Scholar
  113. Lyall F, Deehan MR, Greer IA, Boswell F, Brown WC, McInnes GT. 1994. Mechanical stretch increases proto-oncogene expression and phosphoinositide turnover in vascular smooth muscle cells. J Hypertension, 12: 1139–45.Google Scholar
  114. Macagno E, Melville J, Christensen J. 1975. A model for longitudinal motility of the small intestine. Biorheology, 12: 369–76.PubMedGoogle Scholar
  115. Macagno EO, Christensen J. 1980. Fluid mechanics of the duodenum. Ann Rev Fluid Mech, 12: 139–58.Google Scholar
  116. Macagno EO, Christensen J. 1981. Fluid mechanics of gastrointestinal flow. In: Physiology of the Gastrointestinal Tract. ed. Johnson LR et al. New York: Raven Press.Google Scholar
  117. Mall F. 1896. A study of the intestinal contraction. Johns Hopkins Hosp Rep, 1: 37–75.Google Scholar
  118. Mandrek K, Golenhofen K. 1990. Phasi--rhythmical and tonic components in gastrointestinal motility. In: Frontiers in Smooth Muscle Research. pp. 463–81. Alan R. Liss, Inc.Google Scholar
  119. Mandrek K, Golenhofen K. 1990. Tonic duodenal contractions — a process for regulation of duodenal transit. In: Frontiers in Smooth Muscle Research. pp. 459–62. Alan R. Liss, Inc.Google Scholar
  120. Mayrand S, Diamant NE. 1993. Measurement of human esophageal tone in vivo. Gastroenterology, 105: 1411–20.PubMedGoogle Scholar
  121. Meiss RA. 1971. Some mechanical properties of cat intestinal muscle. Am J Physiol, 220: 2000–7.PubMedGoogle Scholar
  122. Melville J, Macagno E, Christensen J. 1975. Longitudinal contractions in the duodenum: their fluid-mechanical function. Am J Physiol, 228: 1887–92.PubMedGoogle Scholar
  123. Meyer JH, Gu Y, Elashoff J, Reedy T, Dressman J, Amidon G. 1986. Effects of viscosity and fluid outflow on postcibal gastric emptying of solids. Am J Physiol, 250: G161–4.PubMedGoogle Scholar
  124. Meyer JH. 1987. Motility of the stomach and gastroduodenal junction. In: Physiology of the Gastrointestinal Tract, 2nd edition, volume 1. ed. Johnson, LR, pp. 613–30. New York: Raven Press.Google Scholar
  125. Miftakhov R, Wingate D. 1994. Numerical simulation of the peristaltic reflex of the small bowel. Biorheology, 31: 309–25.PubMedGoogle Scholar
  126. Miftakhov RN, Abdusheva GR, Christensen, J. 1999. Numerical simulation of motility patterns of the small bowel. parti-formulation of a mathematical model. J Theoretical Biology, 197: 89–112.Google Scholar
  127. Miftakhov RN, Abdusheva GR, Wingate DL. 1996. Model predictions of myoelectrical activity of the small bowel. Biol Cybern, 74: 167–79.PubMedGoogle Scholar
  128. Miftakhov RN, Abdusheva GR. 1996. Effects of selective K+ channel agonists and antagonists on myoelectrical activity of a locus of the small bowel. Biol Cybern, 75: 331–8.PubMedGoogle Scholar
  129. Miftakhov RN, Abdusheva GR. 1996. Numerical simulation of excitation-contraction coupling in a locus of the small bowel. Biol Cybern, 74: 455–67.PubMedGoogle Scholar
  130. Miftakhov RN, Wingate DL. 1993. Mathematical modeling of the enteric nervous network. 2: facilitation and inhibition of cholinergic transmission. J Biomed Eng, 16: 311–19.Google Scholar
  131. Miftakhov RN, Wingate DL. 1994. Mathematical modeling of the enteric nervous network. 1: cholinergic neuron. J Med Eng Physics, 16: 67–738.Google Scholar
  132. Miftakhov RN, Wingate DL. 1994. Mathematical modeling of the enteric nervous network. 3: adrenergic neuron. J Med Eng Physics, 16: 450–7.Google Scholar
  133. Miftakhov RN, Wingate DL. 1994. Numerical simulation of the peristaltic reflex of the small bowel. J Biorheology, 31: 309–25.Google Scholar
  134. Miftakhov RN, Wingate DL. 1995. Mathematical modeling of the enteric nervous network. 4: analysis of the adrenergic transmission. J Med Eng Phys, 17: 3–10.Google Scholar
  135. Miftakhov RN, Wingate DL. 1995. Mathematical modeling of the enteric nervous network. 5: excitation propagation in a planar neural network. J Med Eng Phys, 17: 11–19.Google Scholar
  136. Miftakhov RN, Wingate DL. 1996. Electrical activity of the sensory afferent pathway in the enteric nervous system. Biol Cybern, 75: 471–83.PubMedGoogle Scholar
  137. Miftakhov RN. 1994. Mathematical modeling of the peristaltic reflex: a numerical experiment. J Math Sci, 71: 2775–89.Google Scholar
  138. Murphy RA. 1976. Contractile system function in mammalian smooth muscle. Blood Vessels, 13: 1–23.PubMedGoogle Scholar
  139. Nothnagel H. 1882. Zur chemischen reizung der glatten muskeln, zugleich als beitrag zur physiologie des darms. Arch Pathol Anat Physiol Klin Med, 88: 1–11.Google Scholar
  140. Orberg J, Baer E, Hiltner J. 1983. Organization of collagen fibers in the intestine. Connect Tissue Res, 11: 285–97.PubMedGoogle Scholar
  141. Orloff Juhl C, Vinter-Jensen L, Djurhuus JC, Gregersen H, Zapher Dajani E. 1994. Biomechanical properties of the oesophagus damaged by endoscopic sclerotherapy. An impedance planimetric study in minipigs. Scand J Gastroenterol, 29: 867–73.Google Scholar
  142. Paintal AS. 1957. Responses from mucosal mechanoreceptors in the small intestine of the cat. J Physiol, 139: 353–68.PubMedGoogle Scholar
  143. Paterson WG, Selucky M, Hynna-Liepert TT. 1991. Effect of intraesophageal location and muscarinic blockade on balloon distension-induced chest pain. Dig Dis Sci, 36: 282–8.PubMedGoogle Scholar
  144. Paterson WG. 1991. Neuromuscular mechanisms of esophageal responses at and proximal to a distending balloon. Am J Physiol, 260: G148–55.PubMedGoogle Scholar
  145. Premen AJ, Dobbins DE, Soika CY, Dabney JM. 1984. Relationship between substance P, intestinal wall compliance and vascular resistance in the canine ileum. Reg Peptides, 9: 119–27.Google Scholar
  146. Premen AJ, Soika CY, Dabney JM, Dobbins DE. 1984. Effects of gastrointestinal hormones on ileal vascular and visceral smooth muscle. Am J Physiol, 246: G1–7.PubMedGoogle Scholar
  147. Rao SSC, Gregersen H, Hayek B, Summers RV, Christensen J. 1996. Unexplained chest pain: The hypersensitive, hyperreactive and poorly compliant esophagus. Ann Intern Med, 124: 950–58.PubMedGoogle Scholar
  148. Reinke DA. 1964. Patterns and parameters of dog gastrointestinal contractile activity monitored by extraluminal force transducers. Thesis. University of Michigan.Google Scholar
  149. Ren J, Massey BT, Dodds WJ, et al. 1993. Determinants of the bolus pressure during esophageal peristaltic bolus transport. Am J Physiol, 264: G407–13.PubMedGoogle Scholar
  150. Ritchie J. 1973. Pain from distention of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut, 14: 125–32.PubMedGoogle Scholar
  151. Roach MR, Burton AC. 1957. The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol, 35: 681–90.PubMedGoogle Scholar
  152. Robison BA, Percy WH, Christensen J. 1984. Differences in cytochrome C oxidase capacity in smooth muscle of opossum esophagus and lower esophageal sphincter. Gastroenterology, 87: 1009–13.PubMedGoogle Scholar
  153. Rogers J. 1992. Testing for and the role of anal and rectal sensation. Balliere’s Clin Gastroenterol, 6: 179–91.Google Scholar
  154. Rosen EM, Mueller SN, Noveral J, Levine EM. 1985. Regulation of angiotensin I-converting enzyme activity in serially cultivated bovine endothelial cells. J Cell Physiol, 122: 30–38.PubMedGoogle Scholar
  155. Rouillon J-M, Azpiroz F, Malagelada J-R. 1991. Reflex changes in intestinal tone: relationship to perception. Am J Physiol, 261: G280–86.PubMedGoogle Scholar
  156. Rouillon J-M, Azpiroz F, Malagelada JR. 1991. Sensorial and intestinointestinal reflex pathways in the human jejunum. Gastroenterology, 101: 1606–12.PubMedGoogle Scholar
  157. Sadoshima J, Izumo S. 1993. Mechanical stratch rapidly activates multiple signal transduction pathways in cardiac mycocytes: potential involvement of an autocrine/paracrine mechanism. The EMBO Journal, 12: 1681–92.PubMedGoogle Scholar
  158. Saffouri B, Weir GC, Bitar KN, Makhlouf GM. 1980. Gastrin and somatostatin secretion by perfused rat stomach. functional linkage of antral peptides. Am J Physiol, 238: G495–501.PubMedGoogle Scholar
  159. Sarna SK. 1985. Cyclic motor activity: Migrating motor complex. Gastroenterology, 89: 894–913.PubMedGoogle Scholar
  160. Sato M, Oshima N, Nerem RM. 1996. Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress. J Biomech, 29: 461–7.PubMedGoogle Scholar
  161. Schaffer JL, Rizen M, L’Italien GJ, Benbrahim A, Megerman J, Gerstenfeld LC, Gray ML. 1994. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. J Orthop Res, 12: 709–19.PubMedGoogle Scholar
  162. Schulze-Delrieu K, Brown BP, Custerhagen T. 1991. Contraction and accomodation of guinea pig duodenum in vitro. Am J Physiol, 261: G364–72.PubMedGoogle Scholar
  163. Schulze-Delrieu K. 1991. Intrinsic differences in the filling response of the guinea pig duodenum and ileum. J Lab Clin Med, 117: 44–50.PubMedGoogle Scholar
  164. Schulze-Delrieu K. 1992. Clearance patterns of the isolated guinea pig duodenum. Gastroenterology, 102: 849–56.PubMedGoogle Scholar
  165. Seelig LL, Goyal RK. 1978. Morphological evaluation of opossum lower esophageal sphincter. Gastroenterology, 75: 51–8.PubMedGoogle Scholar
  166. Sengupta JN, Gebhart GF. 1995. Mechanosensitive afferent fibers in the gastrointestinal and lower urinary tracts. In: Visceral Pain. ed. Gebhart GF, pp. 75–98. Seattle: IASP Press.Google Scholar
  167. Sengupta JN, Kauvar D, Goyal RK. 1989. Characteristics of vagal esophageal tension-sensitive afferent fibers in the opossum. J Neurophysiol, 61: 1001–10.PubMedGoogle Scholar
  168. Sengupta JN, Saha JK, Goyal RK. 1990. Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J Neurophysiol, 64: 796–812.PubMedGoogle Scholar
  169. Sengupta JN, Saha JK, Goyal RK. 1992. Differential sensitivity to bradykinin of esophageal distension-sensitive mechanoreceptors in vagal and sympathetic afferents of the opossum. J Neurophysiol, 68: 1053–67.PubMedGoogle Scholar
  170. Serra J, Azpiro F, Malagelada J-R. 1995. Perception and reflex responses to intestinal distention in humans are modified by simultaneous or previous stimulation. Gastroenterology, 109: 1742–9.PubMedGoogle Scholar
  171. Shyy YJ et al. 1993. Human monocyte colony-stimulating factor stimulates the gene expression of monocyte chemotactic protein-1 and increases the adhesion of monocytes to endothelial monolayers. J Clin Invest, 92: 1745–51.PubMedGoogle Scholar
  172. Siegle M-L, Ehrlein H-J. 1989. Effects of various agents on ileal postprandial motor patterns and transit of chyme in dogs. Am J Physiol, 257: G698–703.PubMedGoogle Scholar
  173. Siuri B, Mittal RK. 1991. Reverse-perfused sleeve: an improved device for measurement of sphincteric function of the crural diaphragm. Gastroenterology, 101: 962–9.Google Scholar
  174. Srivastava LM, Srivastava VP, Sinha SN. 1983. Peristaltic transport of a physiological fluid. Part I. Flow in non-uniform geometry. Biorheology, 20: 153–66.PubMedGoogle Scholar
  175. Stavitsky D, Macagno EO, Christensen J. 1981. Finite-element analysis of flow induced by contractions like those of the intestine. J Biomech, 14: 183–93.PubMedGoogle Scholar
  176. Steadman CJ, Phillips SF, Camilleri M, Talley NJ, Haddad A, Hanson R. 1992. Control of muscle tone in the human colon. Gut, 33: 541–6.PubMedGoogle Scholar
  177. Storkholm JH, Villadsen GE, Jensen SL, Gregersen H. 1995. Passive elastic wall properties in the isolated guinea pig small intestine. Dig Dis Sci, 40: 976–82.PubMedGoogle Scholar
  178. Su X, and Gebhart GF. 1998. Mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat are polymodal in character. J Neurophysiol, 80: 2632–44.PubMedGoogle Scholar
  179. Svendsen P, Ainsworth M, Carter A. 1990. Acid-base status and cardiovascular function in pigs anaesthetized with a-chloralose. Scand J Lab Anim Sci, 17: 89–95.Google Scholar
  180. Szymanski PT, Chacko TK, Rovner AS, Goyal RK. 1998. Differences in contractile protein content and isoforms in phasic and tonic smooth muscle. Am J Physiol, 275: C684–92.PubMedGoogle Scholar
  181. Thewisen M, Ruhl A, Enck P. 2000. On the adequate stimulus for rectal mechanoception and perception: A study in cats and humans. Neurogastroenterol Motil, 12: 43–52.Google Scholar
  182. Thomas JE. 1941. An improved cannula for gastric and intestinal fistulas. Proc Soc Exp Biol Med, 46: 260–61.Google Scholar
  183. Thomas PA, Earlam RJ. 1973. The effect of the gastro-intestinal polypeptide hormones on the electrical activity and pressure of the isolated perfused canine gastro-oesophageal sphincter. Proceedings from the Fourth International Symposium on Gastrointestinal Motility. pp. 243–50. Vancouver: Mitchell Press.Google Scholar
  184. Tøttrup A, Forman A, Uldbjerg N. 1990. Mechanical properties of isolated human esophageal smooth musule. Am J Physiol, G338–43.Google Scholar
  185. Tözeren A, Sung KLP, Sung LA, Dustin ML, Chan PY, Springer TA, Chien S. 1992. Micromanipulation of adhesion of a jurkat cell to a planar bilayer membrane containing lymphocyte function-associated antigen 3 molecules, J Cell Biol, 116: 997–1006PubMedGoogle Scholar
  186. Trendelenburg P. 1917. Physiologische und pharmacologische versuche über die dünndarmperistaltik. Naunyn SchmiedebergArch Exp Pathol Pharmacol, 81: 55–129.Google Scholar
  187. Varma JS, Smith AN. 1986. Reproducibility of the proctometrogram. Gut, 27: 288–92.PubMedGoogle Scholar
  188. Villadsen GE, Storkholm JH, Hendel L, Vilstrup H, Gregersen H. 1997. Impedance planimetric characterization of esophagus in systemic sclerosis patients with severe involvement of esophagus. Dig Dis Sci, 42: 2317–26.PubMedGoogle Scholar
  189. Villadsen GE, Storkholm JH, Zachariae H, Hendel L, Bendtsen F, Gregersen H. 2001. Esophageal pressurecross-sectional area distributions and secondary peristalsis in relation to subclasification of systemic sclerosis. Gastroenterology. Neurogastroenterol Motil, 13: 199–210.PubMedGoogle Scholar
  190. Weems WA. 1987. Intestinal fluid flow: Its production and control. In: Physiology of the Gastrointestinal Tract. ed. Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH, pp. 571–93. New York: Raven Press.Google Scholar
  191. Weisbrodt NW. 1987. Motility of the small intestine. In: Physiology of the Gastrointestinal Tract, 2nd edition. ed. Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH, pp. 631–64. New York: Raven Press.Google Scholar
  192. Whitehead WE, Engle BT, Schuster MM. 1980. Irritable bowel syndrome. Physiological and psychological differences between diarrhea-predominant and constipation-predominant patients. DigDis Sci, 25: 404–13.Google Scholar
  193. Whitehead WE, Holtkotter B, Enck P et al. 1990. Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology, 98: 1187–92.PubMedGoogle Scholar
  194. Williams D, Thompson D, Heggie L, Bancewicz J. 1993. Responses of the human oesophagus to experimental intraluminal distension. Am J Physiol, 265: G196–203.PubMedGoogle Scholar
  195. Wirtz HRW, Dobbs LG. 1990. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science, 250: 1266–9.PubMedGoogle Scholar
  196. Wood JD. 1987. Neurophysiological theory of intestinal motility. Jpn J Smooth Muscle Res, 23: 143–86.Google Scholar
  197. Wood JD. 1987. Physiology of the enteric nervous system. In: Physiology of the Gastrointestinal Tract 2nd edition, volume 1. ed. Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH, pp. 67–110. New York: Raven Press.Google Scholar
  198. Yamada H. 1970. Strength of Biological Materials. Baltimore: The Williams & Wilkins Company.Google Scholar
  199. Yokoyama S, North A. 1983. Electrical activity of longitudinal and circular muscle during peristalsis. Am J Physiol, 244: G83–8.PubMedGoogle Scholar
  200. Yokoyama S, Ozaki T. 1980. Effects of gut distension on Auerbach’s plexus and intestinal muscle. Jpn J Physiol, 30: 143–60.PubMedGoogle Scholar
  201. Yuan SY, Furness JB, Bornstein JC, Smith TK. 1991. Mucosal distorsion by compression elicits polarized reflexes and enhances responses of the circular muscle to distension in the small intestine. J Autonom Nerv Syst, 35: 219–26.Google Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Hans Gregersen
    • 1
  1. 1.Centre for Sensory-Motor Interaction, Laboratory for Gastrointestinal Biomechanics and Sensory-Motor Funtion, Department of Surgical Gastroenterology, Aalborg HospitalAalborg UniversityDenmark

Personalised recommendations