Skip to main content

Standardization and Pre-trial Quality Control

  • Chapter
Clinical Trials in Osteoporosis

Abstract

Before initiating a clinical trial the sponsor must be assured that the equipment and techniques used can adequately answer the research question. In multicenter trials each center may have instruments from different manufacturers, compounding the issues involved in initiating the trial. The investigator needs to be assured that:

  1. 1.

    the instruments and anatomical site chosen are adequate to classify the osteoporotic status of patients on entry to the trial and monitor the anticipated change in BMD or QUS;

  2. 2.

    staff are adequately trained on the equipment to be used;

  3. 3.

    the long-term precision is known within the patient group studied;

  4. 4.

    differences between instruments are known and where necessary a cross-calibration derived;

  5. 5.

    patient radiation doses are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazess RB, Trempe JA, Bisek JP, Hanson JA. Calibration of dual-energy X-ray absorptiometry (DEXA) for bone density. J Bone Miner Res 1991; 6: 799–806.

    Article  PubMed  CAS  Google Scholar 

  2. Laskey MA, Flaxman ME, Barber RW et al. Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR-1000 dual energy X-ray absorptiometers. Br J Radiol 1991; 64: 1023–9.

    Article  PubMed  CAS  Google Scholar 

  3. Laskey MA, Crisp AJ, Cole TJ, Compston JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol 1992; 65: 1124–9.

    Article  PubMed  CAS  Google Scholar 

  4. Genant HK, Grampp S, Gluer CC et al. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994; 9: 1503–14.

    Article  PubMed  CAS  Google Scholar 

  5. Economos CD, Nelson ME, Fiatarone MA et al. A multicenter comparison of dual-energy X-ray absorptiometers: in vivo and in vitro measurements of bone mineral content and density. J Bone Miner Res 1996; 11: 275–85.

    Article  PubMed  CAS  Google Scholar 

  6. Orwoll ES, Oviatt SK. Longitudinal precision of dual-energy x-ray absorptiometry in a multicenter study. The Nafarelin/Bone Study Group. J Bone Miner Res 1991; 6: 191–7.

    Google Scholar 

  7. Khan KM, Henzell SL, Broderick C at al. Instrument performance in bone density testing at five Australian centres. Aust N Z J Med 1997; 27: 526–30.

    Article  PubMed  CAS  Google Scholar 

  8. Kolta S, Ravaud P, Fechtenbaum J, Dougados M, Roux C. Accuracy and precision of 62 bone densitometers using a European Spine Phantom. Osteoporos Int 1999; 10: 14–19.

    Article  PubMed  CAS  Google Scholar 

  9. Mazess RB, Sorensen JA, Hanson JA, Collick BD, Smith SW. Dual-energy X-ray absorptiometry. In: Ring EFJ, Evans WD and Dixon AS (eds). Osteoporosis and Bone Mineral Measurement. York: IPSM, pp 62–71, 1989.

    Google Scholar 

  10. Blake GM, Wahner HW, Fogelman I. The Evaluation of Osteoporosis, 2nd edn. London: Martin Dunitz, 1999.

    Google Scholar 

  11. Lees B, Garland SW, Walton C, Stevenson JC. Evaluation of the European Spine Phantom in a multi-centre clinical trial. Osteoporos Int 1997; 7: 570–4.

    Article  PubMed  CAS  Google Scholar 

  12. Pearson J, Dequeker J, Henley M et al. European semi-anthropomorphic spine phantom for the calibration of bone densitometers: assessment of precision, stability and accuracy. The European Quantitation of Osteoporosis Study Group. Osteoporos Int 1995 5: 174–84.

    Article  PubMed  CAS  Google Scholar 

  13. Laskey MA, Crisp AJ, Cole TJ and Comptson JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual energy X-ray absorptiometers. Br J Radiol 1992; 65: 1124–9.

    Article  PubMed  CAS  Google Scholar 

  14. Strelitzki R, Truscott JG. An evaluation of the reproducibility and responsiveness of four “state-of-the-art” ultrasonic heel bone measurement systems using phantoms. Osteoporos Int 1998; 8: 104–9.

    Article  PubMed  CAS  Google Scholar 

  15. Horton BR, Pearson D, Masud T. A comparison of ultrasound measurements using the Achilles Plus and Cuba II. In: Current Research in Osteoporosis and Bone Mineral Measurement V. London: British Institute of Radiology, p 69, 1998.

    Google Scholar 

  16. Pearson D, Cawte SA, Horton B, Green DJ. Cross calibration of an Achilles Plus and Achilles ultrasound machine, Osteoporos Int 1997; 7: 302.

    Article  Google Scholar 

  17. Diessel E, Fuerst T, Njeh CF, Hans D, Cheng S, Genant HK. Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements. Br J Radiol 2000; 73: 23–30.

    PubMed  CAS  Google Scholar 

  18. Clarke AJ, Evans JA, Truscott JG, Milner R, Smith MA. A phantom for quantitative ultrasound of trabecular bone. Phys Med Biol 1994; 39: 1677–87.

    Article  PubMed  CAS  Google Scholar 

  19. Strelitzki R, Clarke AJ, Truscott JG, Evans JA. Ultrasonic measurement: an evaluation of three heel bone scanners compared with a bench-top system. Osteoporos Int 1996; 6: 471–9.

    Article  PubMed  CAS  Google Scholar 

  20. Truscott JG. Reference data for ultrasonic bone measurement: variation with age in 2087 Caucasian women aged 16–93 years. Br J Radiol 1997; 70: 1010–16.

    PubMed  CAS  Google Scholar 

  21. Tothill P, Fenner JA, Reid DM. Comparisons between three dual-energy X-ray absorptiometers used for measuring spine and femur. Br J Radiol 1995; 68: 621–9.

    Article  PubMed  CAS  Google Scholar 

  22. Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Geneva: World Health Organization, 1994.

    Google Scholar 

  23. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective. How many women have osteoporosis? J Bone Miner Res 1992; 7: 1005–10.

    Article  PubMed  Google Scholar 

  24. Grampp S, Genant HK, Mathur A et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 1997; 12: 697–711.

    Article  PubMed  CAS  Google Scholar 

  25. Faulkner KG, von Stetten E, Miller P. Discordance in patient classification using T-scores. J Clin Densitom 1999; 2: 343–50.

    Article  PubMed  CAS  Google Scholar 

  26. Lehmann R, Wapniarz M, Randerath O et al. Dual-energy X-ray absorptiometry at the lumbar spine in German men and women: a cross-sectional study. Calcif Tissue Int 1995; 56: 350–4.

    Article  PubMed  CAS  Google Scholar 

  27. Oldroyd B, Stewart S, Truscott JG et al. Bone mineral density in normal women living in the UK. In: Ring EFJ (ed.). Current Research in Osteoporosis and Bone Mineral Measurement. London: British Institute of Radiology, p 53, 1990.

    Google Scholar 

  28. Truscott JG, Oldroyd B, Simpson M et al. Variation in lumbar spine and femoral neck bone mineral measured by dual energy X-ray absorption: a study of 329 normal women. Br J Radiol 1993; 66: 514–21.

    Article  PubMed  CAS  Google Scholar 

  29. Ryan PJ, Spector TP, Blake GM, Doyle DV, Fogelman I. A comparison of reference bone mineral density measurements derived from two sources: referred and population based. Br J Radiol 1993; 66: 1138–41.

    Article  PubMed  CAS  Google Scholar 

  30. Petley GW, Cotton AM, Murrills AJ et al. Reference ranges of bone mineral density for women in southern England: the impact of local data on the diagnosis of osteoporosis. Br J Radiol 1996; 69: 655–60.

    Article  PubMed  CAS  Google Scholar 

  31. Looker AC, Wahner HW, Dunn WL et al. Proximal femur bone mineral levels of US adults. Osteoporos Int 1995; 5: 389–409.

    Article  PubMed  CAS  Google Scholar 

  32. Looker AC, Wahner HW, Dunn WL et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 1998; 8: 468–89.

    Article  PubMed  CAS  Google Scholar 

  33. Gluer CC, Blake GMK, Lu Y et al. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5: 262–70.

    Article  PubMed  CAS  Google Scholar 

  34. Miller CG, Herd RJM, Ramalingam T et al. Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporos Int 1993; 3: 31–5.

    Article  PubMed  CAS  Google Scholar 

  35. Blake GM, Fogelman I. Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med 1997; 17: 210–28.

    Google Scholar 

  36. Horton BR, Pearson D, Masud T. A comparison of ultrasound measurements using the Achilles Plus and Cuba II. In: Ring EFJ (ed.). Current Research in Osteoporosis and Bone Mineral Measurement V. London: British Institute of Radiology, p 69, 1998.

    Google Scholar 

  37. Sahota O, San P, Cawte SA, Pearson D, Hosking DJ. A comparison of the longitudinal changes in quantitative ultrasound with dual-energy X-ray absorptiometry: the four-year effects of hormone replacement therapy. Osteoporos Int 2000; 11: 52–8.

    Article  PubMed  CAS  Google Scholar 

  38. Cawte SA, Pearson D, Green DJ, Maslanka WB, Miller CG, Rogers AT. Cross-calibration, precision and patient dose measurements in preparation for clinical trials using dual energy X-ray absorptiometry of the lumbar spine. Br J Radiol 1999; 72: 354–62.

    PubMed  CAS  Google Scholar 

  39. Faulkner KG, McClung MR. Quality control of DXA instruments in multicenter trials. Osteoporos Int 1995; 5: 218–27.

    Article  PubMed  CAS  Google Scholar 

  40. Hui SL, Gao S, Zhou XH et al. Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 1997; 12: 1463–70.

    Article  PubMed  CAS  Google Scholar 

  41. Feldmann U, Schneider B, Klinkers H, Haeckel R. A multivariate approach for the biometric comparison of analytical methods in clinical chemistry. J Clin Chem Clin Biochem 1981; 19: 121–37.

    PubMed  CAS  Google Scholar 

  42. Armitage P, Berry G. Statistical Methods in Medical Research, 3rd edn. Oxford: Blackwell Science.

    Google Scholar 

  43. Genant HK, Grampp S, Gluer CC et al. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994; 9: 1503–14.

    Article  PubMed  CAS  Google Scholar 

  44. Genant HK. Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1995; 10: 997–8.

    Article  PubMed  CAS  Google Scholar 

  45. Steiger P. Standardization of measurements for assessing BMD by DXA. Calcif Tissue Int 1995; 57: 469.

    Article  PubMed  CAS  Google Scholar 

  46. Hanson J. Standardization of proximal femur BMD measurements. International Committee for Standards in Bone Measurement. Osteoporos Int 1997; 7: 500–1.

    Article  PubMed  CAS  Google Scholar 

  47. Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Oxford: Pergamon Press, 1991; 21: 11–21.

    Google Scholar 

  48. Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM. Radiation dose and in vitro precision in paediatric bone mineral density measurement using dual X-ray absorptiometry. Br J Radiol 1997; 70: 719–27.

    PubMed  CAS  Google Scholar 

  49. Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK. Radiation exposure in bone mineral density assessment. Appl Radiat Isot 1999; 50: 215–36.

    Article  PubMed  CAS  Google Scholar 

  50. Huda W, Morin RL. Patient doses in bone mineral densitometry. Br J Radiol 1996; 69: 422–5.

    Article  PubMed  CAS  Google Scholar 

  51. Minne HW, Leidig G, Wuster C et al. A newly developed spine deformity index (SDI) to quantitate vertebral crush fractures in patients with osteoporosis. Bone Miner 1988; 3: 335–49.

    PubMed  CAS  Google Scholar 

  52. Eastell R, Cedel S, Wahner HW, Riggs BL, Melton LJ. Classification of vertebral fractures. J Bone Miner Res 1991; 6: 207–15.

    Article  PubMed  CAS  Google Scholar 

  53. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J Epidemiol 1989; 129: 1000–11.

    PubMed  Google Scholar 

  54. Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P. A new approach to defining normal vertebral dimensions. J Bone Miner Res 1991; 6: 883–92.

    Article  PubMed  CAS  Google Scholar 

  55. McCloskey EV, Spector TD, Eyres KS et al. The assessment of vertebral deformity: A method for use in population studies and clinical trials. Osteoporos Int 1993; 3: 138–47.

    Article  PubMed  CAS  Google Scholar 

  56. Cawte SA. Morphometric X-ray Absorptiometry using the Hologic QDR 2000. MPhil Thesis, University of Nottingham, 1999.

    Google Scholar 

  57. Barnett E, Nordin BEC. Radiological assessment of bone density. Br J Radiol 1961; 34: 683–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Pearson, D. (2002). Standardization and Pre-trial Quality Control. In: Pearson, D., Miller, C.G. (eds) Clinical Trials in Osteoporosis. Springer, London. https://doi.org/10.1007/978-1-4471-3710-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3710-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-229-7

  • Online ISBN: 978-1-4471-3710-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics