Advertisement

Biochemical Markers of Bone Turnover

  • Penny Blackwell
  • Ian Godber
  • Nigel Lawson

Abstract

The routine clinical assessment of bone mineral density (BMD) is best undertaken by the use of DXA and ultrasound scans. These techniques will establish BMD at a particular time. Using serial DXA measurements it is possible to measure a change in BMD over a set period of time. It is presumed that these measured changes in BMD are due to alterations in bone turnover, but they are not direct measurements of bone turnover. Furthermore, DXA scans and ultrasound can only indicate that loss of BMD has occurred, a single measurement cannot indicate that bone loss is occurring, and may lead to a lowered BMD in the future. These radiological and ultrasound techniques have other limitations, not least inherent imprecision of the methods, which means that there have to be considerable changes in bone turnover before changes in BMD can be noticed. For example, the 1–2% imprecision of DXA measurement limits scanning to 6-monthly intervals, so that observed changes are certain to be due to bone loss and not imprecision. The skilled nature of these techniques combined with the need for special equipment, and in the case of DXA exposure to ionizing radiation, has fueled the search for useful and reliable markers of bone turnover.

Keywords

Bone Mineral Density Bone Turnover Bone Alkaline Phosphatase High Performance Liquid Chromato High Performance Liquid Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 1996; 17: 333–68.PubMedGoogle Scholar
  2. 2.
    Reid KBM. A collagen-like amino acid sequence in a polypeptide chain of human Clq (a subcomponent of the first component of complement). Biochem J 1974; 141: 189–203.PubMedGoogle Scholar
  3. 3.
    Deacon AC, Hulme P, Hesp R, Green JR, Tellez M, Reeve J. Estimation of whole body bone resorption rate: a comparison of urinary total hydroxyproline excretion with two radioisotopic tracer methods in osteoporosis. Clin Chim Acta 1987; 166: 297–306.PubMedCrossRefGoogle Scholar
  4. 4.
    Reed P, Holbrook IB, Gardener MLG, McMurray JR. Simple, optimised liquid-chromatographic method for measuring total hydroxyproline in urine evaluated. Clin Chem 1991; 37: 285–90.PubMedGoogle Scholar
  5. 5.
    Bettica P, Moro L, Robins SP, Taylor AK, Talbot J, Singer FR, Baylink DJ. Bone resorption markers galactosyl hydroxylysine, pyridinium crosslinks and hydroxyproline compared. Clin Chem 1992; 38: 2313–18.PubMedGoogle Scholar
  6. 6.
    Moro L, Gazzarrini C, Crivellari D, Galligioni E, Talamini R, de Bernard B. Biochemical markers for detecting bone metastases in patients with breast cancer. Clin Chem 1993; 39: 131–4.PubMedGoogle Scholar
  7. 7.
    Seibel MJ, Robins SP, Bilezikian JP. Urinary pyridinium crosslinks of collagen–specific markers of bone resorption in metabolic bone disease. Trends Endocrinol Metab 1992; 3: 263–70.PubMedCrossRefGoogle Scholar
  8. 8.
    James I, Crowley C. Assay of pyridinium crosslinks in serum using narrow bore ion paired reversed phase high performance liquid chromatography. J Chromatogr 1993; 612: 41–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ogawa T, Ono T, Tsuda M, Kawanishi Y. A novel fluor in insoluble collagen: a crosslinking moiety in collagen molecule. Biochem Biophys Res Commun 1982; 107: 1252–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Uebelhart D, Gineyts E, Chapuy M-C, Delmas PD. Urinary excretion of pyridinium crosslinks: a new marker of bone resorption in metabolic bone disease. Bone and Mineral 1990; 8: 87–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Robins SP. Collagen crosslinks in metabolic bone disease. Acta Orthop Scand (Suppl 266) 1995; 66: 171–5.Google Scholar
  12. 12.
    Eyre DR, Koob TJ, Van Ness KP. Quantitation of hydroxypyridinium crosslinks in collagen by high performance liquid chromatography. Anal Biochem 1984; 137: 380–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Kollerup G, Thamsborg G, Bathia H, Sorensen OH. Quantitation of urinary hydroxypyridinium cross-links from collagen by high performance liquid chromatography. Scand J Clin Lab Invest 1992; 52: 657–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Robins SP, Woitge HW, Hesley RP, Ju J, Seyedin SM, Seibel MJ. Direct, enzyme linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J Bone Miner Res 1994; 9: 1643–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Abbiati G, Rigoldi M, Frignani S, Colombo L, Mussini E. Determination of pyridinium crosslinks in plasma and serum by high performance liquid chromatography. J Chromatogr 1994; 656: 303–10.CrossRefGoogle Scholar
  16. 16.
    Robins SP, Duncan A, Wilson N, Evans BJ. Standardisation of pyridinium crosslinks, pyridinoline and deoxypyridinoline, for use as biochemical markers of collagen degradation. Clin Chem 1996; 42: 1621–6.PubMedGoogle Scholar
  17. 17.
    Beardsworth LJ, Eyre DR, Dickson IR. Changes with age in the urinary excretion of lysyl-and hydroxylysylpyridinoline, two new markers of bone collagen turnover. J Bone Miner Res 1990; 5: 671–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Gerrits MI, Thijssen JHH, van Rijn HJM. Determination of pyridinoline and deoxypyridinoline in urine, with special attention to retaining their stability. Clin Chem 1995; 41: 571–4.PubMedGoogle Scholar
  19. 19.
    McLaren AM, Isdale AH, Whiting PH, Bird HA, Robins SP. Physiological variations in the urinary excretion of pyridinium crosslinks of collagen. Br J Rheum 1993; 32: 307–12.CrossRefGoogle Scholar
  20. 20.
    Bjorgaas M, Haug E, Johnsen HJ. The urinary excretion of deoxypyridinium cross-links is higher in diabetic than nondiabetic adolescents. Calcif Tissue Int 1999; 65: 121–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Garnero P, Gineyts E, Arbault P, Christiansen C, Delmas PD. Different effects of bisphosphonate and oestrogen therapy on free and peptide bound bone crosslinks excretion. J Bone Miner Res 1995; 10: 641–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Kamel S, Brazier M, Rogez JC, Vincent O, Maamer M, Desmet G, Serbert JL. Different responses of free and peptide bound crosslinks to vitamin D and calcium supplementation in elderly women with vitamin D insufficiency. J Clin Endocrinol Metab 1996; 81: 3717–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Hanson DA, Weis ME, Bollen A, Maslan SL, Singer FR, Eyre DR. A specific immunoassay for monitoring human bone resorption: quantitation of type 1 collagen crosslinked N-telopeptides in urine. J Bone Miner Res 1992; 7: 1251–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Melkko J, Niemi S, Risteli J, Risteli L. Radioimmunoassay of the carboxyterminal propeptide of human type 1 procollagen. Clin Chem 1990; 36: 1328–32.PubMedGoogle Scholar
  25. 25.
    Bonde M, Qvist P, Fledelius C, Riis BJ, Christiansen C. Immunoassay for quantifying type 1 collagen degradation products in urine evaluated. Clin Chem 1994; 40: 2022–5.PubMedGoogle Scholar
  26. 26.
    Rosen HN, Moses AC, Garber J, Iloputaife ID, Ross DS, Lee SL, Greenspan SL. Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int 2000; 66: 100–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Eriksen EF, Charles P, Melsen F, Mosekilde L, Risteli L, Risteli J. Serum markers of type 1 collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J Bone Miner Res 1993; 8: 127–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 1996; 17: 333–68.PubMedGoogle Scholar
  29. 29.
    Ebeling PR, Atley LM, Guthrie JR, Burger HG, Dennerstein L, Hopper JL, Wark JD. Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab 1996; 81: 3366–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Kamel S, Brazier M, Rogez JC, Vincent O, Maamer M, Desmet G, Sebert JL. Different responses of free and peptide bound crosslinks to vitamin D and calcium supplementation in elderly women with vitamin D insufficiency. J Clin Endocrinol Metab 1996; 81: 3717–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Bonde M, Fledelius C, Qvist P, Christiansen C. Coated-tube radioimmunoassay for C-telopeptides of type I collagen to assess bone resorption. Clin Chem 1996; 42: 1639–44.PubMedGoogle Scholar
  32. 32.
    Zanze M, Souberbielle JC, Kindermans C, Rossignol C, Garabedian M. Procollagen propeptide and pyridinium cross-links as markers of type I collagen turnover: sex-and age-related changes in healthy children. J Clin Endocrinol Metab 1997; 82: 2971–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Price CP, Kirwan A, Vader C. Tartrate resistant acid phosphatase as a marker of bone resorption. Clin Chem 1995; 41: 641–3.PubMedGoogle Scholar
  34. 34.
    Cheung CK, Panesar NS, Haines C, Masarei J, Swaminathan R. Immunoassay of a tartrate resistant acid phosphatase in serum. Clin Chem 1995; 41: 679–86.PubMedGoogle Scholar
  35. 35.
    Halleen JM, Hentunen TA, Karp M, Kakonen SM, Pettersson K, Vaananen HK. Characterization of serum tartrate resistant acid phosphatase and development of a direct two site immunoassay. J Bone Miner Res 1998; 13: 683–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 1986; 83: 7182–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Weiss MJ, Ray K, Henthorn PS, Lamb B, Kadesch T, Harris H. Structure of the human liver/bone/ kidney alkaline phosphatase gene. J Biol Chem 1988; 263: 12002–10.PubMedGoogle Scholar
  38. 38.
    Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 1994; 15: 439–61.PubMedGoogle Scholar
  39. 39.
    Farley JR, Hall SL, Ilacas D, Orcutt C, Miller BE, Hill CS, Baylink DJ. Quantification of skeletal alkaline phosphatase in osteoporotic serum by wheat germ agglutinin precipitation, heat inactivation, and a two-site immunoradiometric assay. Clin Chem 1994; 40: 1749–56.PubMedGoogle Scholar
  40. 40.
    van Hoof V, De Broe ME. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 1994; 31: 197–293.PubMedCrossRefGoogle Scholar
  41. 41.
    Moss DW. Alkaline phosphatase isoenzymes. Clin Chem 1982; 28: 2007–16.PubMedGoogle Scholar
  42. 42.
    Price CP. Multiple forms of human serum alkaline phosphatase: detection and quantitation. Ann Clin Biochem 1993; 30: 355–72.PubMedGoogle Scholar
  43. 43.
    Rosalki SB, Ying Foo A. Two new methods for separating and quantifying bone and liver alkaline phosphatase isoenzymes in plasma. Clin Chem 1984; 30: 1182–6.PubMedGoogle Scholar
  44. 44.
    Moss DW, Edwards RK. Improved electrophoretic resolution of bone and liver alkaline phosphatases resulting from partial digestion with neuraminidase Clin Chim Acta 1984; 143: 177–82.Google Scholar
  45. 45.
    Mattiazzo M, Ramasamy I. Wheat germ lectin affinity electrophoresis of serum alkaline phosphatase with commercially available agarose gels. Clin Chem 1993; 39: 1404–7.PubMedGoogle Scholar
  46. 46.
    Kuwana T, Sugita O, Yakata M. Reference limits of bone and liver alkaline phosphatase isoenzymes in the serum of healthy subjects according to age and sex as determined by wheat germ lectin affinity electrophoresis. Clin Chim Acta 1988; 173: 273–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Sorensen S. Wheat germ agglutinin method for measuring bone and liver isoenzymes of alkaline phosphatase assessed in postmenopausal osteoporosis. Clin Chem 1988; 34: 1636–40.PubMedGoogle Scholar
  48. 48.
    Behr W, Barnert J. Quantification of bone alkaline phosphatase in serum by precipitation with wheat germ lectin: A simplified method and its clinical plausibility. Clin Chem 1986; 32: 1960–6.Google Scholar
  49. 49.
    Farley JR, Hall SL, Ilacas D, Orcutt C, Miller BE, Hill CS et al. Quantification of skeletal alkaline phosphatase in osteoporotic serum by wheat germ agglutinin precipitation, heat inactivation, and a two-site immunoradiometric assay. Clin Chem 1994; 40: 1749–56.PubMedGoogle Scholar
  50. 50.
    Burlina A, Plebani M, Secchiero S, Zaninotto M, Sciacovelli L. Precipitation method for separating and quantifying bone and liver alkaline phosphatase isoenzymes. Clin Biochem 1991; 24: 417–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Rosalki SB, Ying Foo A, Burlina A, Prellwitz W, Stieber P, Neumeier D et al. Multicentre evaluation of Iso–ALP test kit for measurement of bone alkaline phosphatase activity in serum and plasma. Clin Chem 1993; 39: 648–52.PubMedGoogle Scholar
  52. 52.
    Lawson GM, Katzmann JA, Kimlinger TK, O’Brien JF. Isolation and preliminary characterization of a monoclonal antibody that interacts preferentially with the liver isoenzyme of human alkaline phosphatase. Clin Chem 1985; 31: 381–5.PubMedGoogle Scholar
  53. 53.
    Hill CS, Wolfert RL. The preparation of monoclonal antibodies which react preferentially with human bone alkaline phosphatase and not liver alkaline phosphatase. Clin Chim Acta 1989; 186: 315–20.CrossRefGoogle Scholar
  54. 54.
    Garnero P, Delmas PD. Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease. J Clin Endocrinol Metab 1993; 77: 1046–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Panigrahi K, Delmas PD, Singer FR et al. Characteristics of a two Site immunoradiometric assay for human skeletal alkaline phosphatase serum. Clin Chem 1994; 40: 822–8.PubMedGoogle Scholar
  56. 56.
    England TE, Samsoondar J, Maw G. Evaluation of the Hybritech Tandem-R Ostase immunoradiometric assay for skeletal alkaline phosphatase. Clin Biochem 1994; 27: 187–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Van Hoof VO, Martin M, Blockx P et al. Immunoradiometric method and electrophoretic system compared for quantifying bone alkaline phosphatase in serum. Clin Chem 1995; 41: 853–7.PubMedGoogle Scholar
  58. 58.
    Crofton PM. Wheat germ lectin affinity electrophoresis for alkaline phosphatase isoforms in children: age dependent reference ranges in liver and bone disease. Clin Chem 1992; 38: 663–70.PubMedGoogle Scholar
  59. 59.
    Okesina AB, Donaldson D, Lascelles PT, Morris P. Effect of gestational age on levels of serum alkaline phosphatase isoenzymes in healthy pregnant women. Int J Gynaecol Obstet 1995; 48: 25–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Melton LJ, Khosla S, Atkinson EJ, O’Fallon WM, Lawrence Riggs B. Relationship of bone turnover to bone density and fractures. J Bone Miner Res 1997; 12: 1083–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Bouman AA, Scheffer PG, Ooms ME, Lips P, Netelenbos C. Two bone alkaline phosphatase assays compared with osteocalcin as a marker of bone formation in healthy elderly women. Clin Chem 1995; 41: 196–9.PubMedGoogle Scholar
  62. 62.
    Hauschka PV, Carr SA. Calcium-dependent alpha helical structure in osteocalcin. Biochemistry 1982; 21: 2538–47.PubMedCrossRefGoogle Scholar
  63. 63.
    Koshihara Y, Hoshi K. Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 1997; 12: 431–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu G, Peacock M. Age-related changes in serum uncarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 1998; 62: 286–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Hart JP, Shearer MJ, Klenerman L, Catterall A, Reeve J, Sambrook PN et al. Electrochemical detection of depressed circulating levels of vitamin K1 in osteoporosis. J Clin Endocrinol Metab 1985; 60: 1268–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Puchacz E, Lian JB, Stein GS, Wozney J, Hueber K, Croce C. Chromosomal localization of the human osteocalcin gene. Endocrinology 1989; 124: 2648–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Price PA, Williamson MK, Lothringer JW. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem 1981; 256: 12760–6.PubMedGoogle Scholar
  68. 68.
    Farrugia W, Melick RA. Metabolism of osteocalcin. Calcif Tissue Int 1986; 39: 234–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Garnero P, Grimaux M, Seguin P, Delmas PD. Characterisation of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res 1994; 9: 255–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Der Eems KL, Brown RD, Gundberg CM. Circulating levels of 1, 25 dihydroxyvitamin D, alkaline phosphatase, hydroxyproline and osteocalcin associated with antler growth in white-tailed deer. Acta Endocrinol 1985; 118: 407–14.Google Scholar
  71. 71.
    Demiaux B, Arlot ME, Chapuy MC, Meunier PJ, Delmas PD. Serum osteocalcin is increased in patients with osteomalacia: correlations with biochemical and histomorphometric findings. J Clin Endocrinol Metab 1992; 74: 1146–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Ducy P, Desbois C, Boyce BF et al. Increased bone formation in osteocalcin deficient mice. Nature 1996; 382: 448–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Masters PW, Jones RG, Purves DA, Cooper EH, Cooney JM. Commercial assays for serum osteocalcin give clinically discordant results. Clin Chem 1994; 40: 358–63.PubMedGoogle Scholar
  74. 74.
    Lee AJ, Hodges S, Eastell R. Measurement of osteocalcin. Ann Clin Biochem 2000; 37: 432–46.PubMedCrossRefGoogle Scholar
  75. 75.
    Gundberg CM, Weinstein RS. Multiple immunoreactive forms of osteocalcin in uraemic serum. J Clin Invest 1986; 77: 1762–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Klein G, Wadlington EL, Collins ED, Catherwood BD, Deftos LJ. Calcitonin levels in sera of infants and children: relations to age and periods of bone growth. Calcif Tissue Int 1984; 36: 635–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Tarallo P, Henny J, Fournier B, Siest G. Plasma osteocalcin: biological variations and reference limits. Scand J Clin Lab Invest 1990; 50: 649–55.PubMedCrossRefGoogle Scholar
  78. 78.
    Nielsen HK, Brixen K, Kassem M, Charles P, Mosekilde L Inhibition of the morning cortisol peak abolishes the expected morning decrease in serum osteocalcin in normal males: evidence of a controlling effect of serum cortisol on the circadian rhythm in serum osteocalcin. J Clin Endocrinol Metab 1992; 74; 1410–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Nielsen HK, Laurberg P, Brixen K, Mosekilde L. Relations between diurnal variations in serum osteocalcin, cortisol, parathyroid hormone and ionized calcium in normal individuals. Acta Endocrinol 1991; 124: 391–8.PubMedGoogle Scholar
  80. 80.
    Morrison NA, Shine J, Fragonas J-C, Verkest V, McMenemy ML, Eisman J. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 1989; 246: 1158–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Wenz I, Reissmann R, Bornig H. Determination of osteocalcin in serum by an ultramicro-ELISA with alkaline phosphatase as marker enzyme. Biomed Biochim Acta 1991; 50: 145–9.PubMedGoogle Scholar
  82. 82.
    Kuronen I, Kokko H, Parivianen M. Production of monoclonal and polyclonal antibodies against human osteocalcin sequences and development of a two site ELISA for intact human osteocalcin. J Immunol Methods 1993; 163: 233–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Monaghan DA, Power MJ, Fottrell PF. Sandwich enzyme immunoassay of osteocalcin in serum with use of an antibody against human osteocalcin. Clin Chem 1993; 39: 942–7.PubMedGoogle Scholar
  84. 84.
    Parivianen M, Kuronen I, Kokko H, Lakaniemi M, Savolainen K, Mononen I. Two-site enzyme immunoassay for measuring intact human osteocalcin in serum. J Bone Miner Res 1994; 9: 347–54.CrossRefGoogle Scholar
  85. 85.
    Rosenquist C, Bonde M, Fledelius C, Qvist P. A simple enzyme-linked immunosorbent assay of human osteocalcin. Clin Chem 1994; 40: 1258–64.PubMedGoogle Scholar
  86. 86.
    Kao PC, Riggs BL, Schryver PG. Development of an osteocalcin chemiluminoimmunoassay. Clin Chem 1993; 39: 1369–74.PubMedGoogle Scholar
  87. 87.
    Power MJ, Gosling JP, Fottrell PF. Radioimmunoassay of osteocalcin with polyclonal and monoclonal antibodies. Clin Chem 1989; 35: 1408–15.PubMedGoogle Scholar
  88. 88.
    Delmas PD, Christiansen C, Mann KG, Price PA. Bone gla protein (osteocalcin) assay standardisation report. J Bone Miner Res 1990; 5: 5–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Diego EMD, Guerrero R, de la Piedra C. Six osteocalcin assays compared. Clin Chem 1994; 40: 2071–7.Google Scholar
  90. 90.
    Colford J, Sailer D, Longman C. Five osteocalcin assays compared: tracer specificity, fragment interference, and calibration. Clin Chem 1997; 43: 1240–1.PubMedGoogle Scholar
  91. 91.
    Power MJ, O’Dwyer B, Breen E, Fottrell PF. Osteocalcin concentrations in plasma prepared with different anticoagulants. Clin Chem 1991; 37: 281–4.PubMedGoogle Scholar
  92. 92.
    Melkko J, Kauppila S, Niemi S, Risteli L, Haukipuro K, Jukkola A, Risteli J Immunoassay for intact amino terminal propeptide of human type 1 procollagen. Clin Chem 1996; 42: 947–54.PubMedGoogle Scholar
  93. 93.
    Olsen BR, Guzman NA, Engel J, Condit C, Aase S. Purification and characterization of a peptide from the carboxy-terminal region of chick tendon procollagen type I. Biochemistry 1977; 16: 3030–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Smedsrod B, Melkko J, Risteli L, Risteli J. Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 1990; 271: 345–50.PubMedGoogle Scholar
  95. 95.
    Sorva A, Tähtelä R, Risteli J, Risteli L, Laitinen K, Juntunen-Backman K, Sorva R. Familial high serum concentrations of the carboxy-terminal propeptide of type 1 procollagen (P1CP). Clin Chem 1994; 40: 1591–3.PubMedGoogle Scholar
  96. 96.
    Melkko J; Hellevik T; Risteli L; Risteli J; Smedsrod B. Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 1994; 179: 405–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Savolainen ER, Goldberg B, Leo MA, Velez M, Lieber CS. Diagnostic value of serum procollagen peptide measurements in alcoholic liver disease. Alcohol Clin Exp Res 1984; 8: 384–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Pedersen BJ, Bonde M. Purification of human procollagen type 1 carboxyl terminal propeptide cleaved as in vivo from procollagen and used to calibrate a radioimmunoassay of the propeptide. Clin Chem 1994; 40: 811–16.PubMedGoogle Scholar
  99. 99.
    Linkhart SG, Linkhart TA, Taylor AK, Wergedal JE, Bettica P, Baylink DJ. Synthetic peptide based immunoassay for amino terminal propeptide of type 1 procollagen: application for evaluation of bone formation. Clin Chem 1993; 39: 2254–8.PubMedGoogle Scholar
  100. 100.
    Risteli J, Niemi S, Trivedi P, Maentausta O, Mowat AP, Risteli L. Rapid equilibrium radioimmunoassay for the amino terminal propeptide of human type III procollagen. Clin Chem 1988; 34: 715–18.PubMedGoogle Scholar
  101. 101.
    Simon LS, Krane SM, Wortman PD, Krane IM, Kovitz KL. Serum levels of type I and III procollagen fragments in Paget’s disease of bone. J Clin Endocrinol Metab 1984; 58: 110–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Taubman MB, Goldberg B, Sherr CJ. Radioimmunoassay for human procollagen. Science 1974; 186: 1115–17.PubMedCrossRefGoogle Scholar
  103. 103.
    Melkko J, Niemi S, Risteli L, Risteli J. Radioimmunoassay for the carboxyterminal propeptide of human type I procollagen. Clin Chem 1990; 36: 1328–32.PubMedGoogle Scholar
  104. 104.
    Davis BH, Madri JA. An immunohistochemical and serum ELISA study of type I and type III procollagen aminopropeptides in primary biliary cirrhosis. Am J Pathol 1987; 128: 265–75.PubMedGoogle Scholar
  105. 105.
    Rasmusson HB, Teisner B, Bangsgaard-Petersen F, Yde-Andersen E, Kassem M. Quantification of fetal antigen 2 (FA2) in supernatants of cultured osteoblasts, normal human serum, and serum from patients with chronic renal failure. Nephrol Dial Transplant 1992; 7: 902–7.Google Scholar
  106. 106.
    Ebeling PR, Peterson JM, Riggs BL. Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases. J Bone Miner Res 1992; 7: 1243–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Tahtela R, Turpeinen M, Sorva R, Karonen SL. The aminoterminal propeptide of type I procollagen: evaluation of a commercial radioimmunoassay kit and values in healthy subjects. Clin Biochem 1997; 30: 35–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Orum O, Hansen M, Jensen CH, Sorensen HA, Jensen LB, Horslev-Petersen K et al. Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism Bone 1996; 2: 157–63.Google Scholar
  109. 109.
    Linkhart SG, Linkhart TA, Taylor AK, Wergedal JE, Bettica P, Baylink DJ. Synthetic peptide-based immunoassay for amino-terminal propeptide of type I procollagen: application for evaluation of bone formation. Clin Chem 1993; 39: 2254–8.PubMedGoogle Scholar
  110. 110.
    Crofton PM, Wade JC, Taylor MR, Holland CV. Serum concentrations of carboxyl-terminal propeptide of type I procollagen, amino-terminal propeptide of type III procollagen, cross-linked carboxyl-terminal telopeptide of type I collagen, and their interrelationships in schoolchildren. Clin Chem 1997; 43: 1577–81.PubMedGoogle Scholar
  111. 111.
    Trivedi P, Risteli J, Risteli J, Hindmarsh PC, Brook CG, Mowat AP. Serum concentrations of the type I and III procollagen propeptides as biochemical markers of growth velocity in healthy infants and children and in children with growth disorders. Pediatr Res 1991; 30: 276–80.PubMedCrossRefGoogle Scholar
  112. 112.
    Lieuw-A-Fa M, Sierra RI, Specker BL. Carboxy-terminal propeptide of human type I collagen and pyridinium cross-links as markers of bone growth in infants 1 to 18 months of age. J Bone Miner Res 1995; 10: 849–53.PubMedCrossRefGoogle Scholar
  113. 113.
    Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem 1997; 30: 573–93.PubMedCrossRefGoogle Scholar
  114. 114.
    Blumsohn A, Eastell R. The performance and utility of biochemical markers of bone turnover: do we know enough to use them in clinical practice? Ann Clin Biochem 1997; 34: 449–59.PubMedGoogle Scholar
  115. 115.
    Taylor AK, Lueken SA, Libanati C, Baylink DJ. Biochemical markers of bone turnover for the clinical assessment of bone metabolism. Rheum Dis Clin North Am 1994; 20: 589–607.PubMedGoogle Scholar
  116. 116.
    Blumsohn A, Hannon RA, Eastell R. Biochemical assessment of skeletal activity. Physical Med Rehab Clin North Am 1995; 6: 483–505.Google Scholar
  117. 117.
    Eastell R, Robins SP, Colwell T, Assiri AMA, Riggs BL, Russell RGG. Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporos Int 1993; 3: 255–60.PubMedCrossRefGoogle Scholar
  118. 118.
    Rosalki SB. Biochemical markers of bone turnover. Int J Clin Practice 1998; 52 /4: 255–6.Google Scholar
  119. 119.
    Demers LM. Clinical usefulness of markers of bone degradation and formation. Scand J Clin Lab Invest 1997; Suppl 227: 12–20.Google Scholar
  120. 120.
    Garnero P, Hausherr E, Chapuy MC et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 1996; 11: 1531–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Seibel MJ, Cosman F, Shen V, Gordon S, Dempster DW, Ratcliffe A, Lindsay R. Urinary hydroxypyridinium crosslinks of collagen as markers of bone resorption and oestrogen efficacy in postmenopausal osteoporosis. J Bone Miner Res 1993; 8: 881–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Garnero P, Shih WJ, Gineyts E, Karpf DB, Delmas PD. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994, 79; 1693–700.PubMedCrossRefGoogle Scholar
  123. 123.
    Chesnut CH III, McClung MR, Ensrud KE, Bell NH, Genant HK, Harris ST et al. Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodelling. Am J Med 1995; 99: 144–52.PubMedCrossRefGoogle Scholar
  124. 124.
    Blumsohn A, Naylor KE, Assiri AM, Eastell R. Different responses of biochemical markers of bone resorption to bisphosphonate therapy in Paget’s disease. Clin Chem 1995; 41: 1592–8.PubMedGoogle Scholar
  125. 125.
    Delmas PD. Biochemical markers of bone turnover in Paget’s disease of the bone. J Bone Miner Res 1999; 14: 66–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996; 11: 337–49.PubMedCrossRefGoogle Scholar
  127. 127.
    Prestwood KM, Pilbeam CC, Burleson JA, Woodie FN, Delmas PD, Deftos LJ et al. The short term effects of conjugated oestrogen on bone turnover in older women. J Clin Endocrinol Metab 1994; 79: 366–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Hassager C, Jensen LT, Johansen JS et al. The carboxy-terminal propeptide of type I procollagen in serum as a marker of bone formation: the effect of nandrolone decanoate and female sex hormones. Metabolism 1991; 40: 205–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Duda RJ, O’Brien JF, Katzmann JA, Peterson JM, Mann KG, Lawrence Riggs B. Concurrent assays of circulating bone GLA protein and bone alkaline phosphatase: effects of sex, age and metabolic bone disease. J Clin Endocrinol Metab 1988; 66: 951–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Penny Blackwell
  • Ian Godber
  • Nigel Lawson

There are no affiliations available

Personalised recommendations