Skip to main content

Relevance Feedback Techniques in Image Retrieval

  • Chapter

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Despite the extensive research effort, the retrieval techniques used in content-based image retrieval (CBIR) systems lag behind the corresponding techniques in today’s best text search engines, such as Inquery [2], Alta Vista, and Lycos. One reason is that the information embedded in an image is far more complex than that in text. To better understand the history and methodology of CBIR and how we can improve CBIR’s performance, we will first introduce an image object model before we go into the details of the discussions. An image object (O) can be modeled as a function of the image data (D), features (F), and representations (R). This is described below and also shown in Fig. 9.1:

$$O = O(D,F,R).$$
(9.1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckley C and Salton, G, “Optimization of Relevance Feedback Weights”, SIGIR’95, 1995.

    Google Scholar 

  2. Callan, JP, Bruce Croft, W, and Harding, SM, “The Inquery Retrieval System”, 3rd Int. Conf. on Database and Expert System Application, September, 1992.

    Google Scholar 

  3. Chang T and Jay Kuo, CC, “Texture Analysis and Classification with Tree-Structured Wavelet Transform”, IEEE Trans Image Proc, 2(4), pp. 429–441, October, 1993.

    Article  Google Scholar 

  4. Cheng, B, “Approaches to Image Retrieval Based on Compressed Data for Multimedia Database Systems”, PhD dissertation, University of New York at Buffalo, 1996.

    Google Scholar 

  5. Cox, IJ, Miller, ML, Omohundro, SM, and Yianilos, PN, “Target Testing and the PicHunter Bayesian Multimedia Retrieval Dystem”, Advanced Digital Libraries Forum, Washington D.C., May, 1996.

    Google Scholar 

  6. Daneels, D, Campenhout, D, Niblack, W, Equitz, W, Barber, R, Bellon, E, and Fierens, F, “Interactive Outlining: An Improved Approach Using Active Contours”, SPIE Storage and Retrieval for Image and Video Databases, 1993.

    Google Scholar 

  7. Duda RO and Hart, PE, Pattern Classification and Scene Analysis, John Wiley and Sons, Inc, New York, chapter 6, pp. 211-249, 1973.

    Google Scholar 

  8. Equitz, W and Niblack, W, “Retrieving Images from a Database Using Texture-Algorithms from the QBIC System”, Technical Report RJ 9805, Computer Science, IBM Research Report, May, 1994.

    Google Scholar 

  9. Fagin, R and Wimmers, EL, “Incorporating User Preferences in Multimedia Queries”, Int. Conf. on Database Theory, 1997.

    Google Scholar 

  10. Haralick, RM, Shanmugam, K, and Dinstein Y, “Texture Features for Image Classification”, IEEE Trans on Syst Man Cybern, SMC-3(6), pp. 610–621, 1973.

    Article  Google Scholar 

  11. Huang, TS and Rui, Y, “Image Retrieval: Past, Present, and Future”, Int. Symposium on Multimedia Information Processing, December, 1997.

    Google Scholar 

  12. Ishikawa, Y, Subramanya, R, and Faloutsos, C, “Mindreader: Query Databases Through Multiple Examples”, 24th VLDB Conference, New York, 1998.

    Google Scholar 

  13. Liu, F and Picard, RW, “Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval”, IEEE Trans Patt Recog Mach Intell, 18(7), pp. 722–733, July, 1996.

    Article  Google Scholar 

  14. Ma, WY and Manjunath, BS, “Texture Features and Learning Similarity”, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 425-430, 1996.

    Google Scholar 

  15. Ma, WY and Manjunath, BS, “Netra: A Toolbox for Navigating Large Image Databases”, IEEE Int. Conf. on Image Processing, 1997.

    Google Scholar 

  16. Mandai, MK, Aboulnasr, T, and Panchanathan, S, “Image Indexing Using Moments and Wavelets”, IEEE Trans Consum Electron, 42(3), pp. 557–565, August, 1996.

    Article  Google Scholar 

  17. Manjunath, BS and Ma, WY, “Image Indexing Using a Texture Dictionary”, SPIE Conference on Image Storage and Archiving System, Vol. 2606, 1995.

    Google Scholar 

  18. Manjunath, BS and Ma, WY, “Texture Features for Browsing and Retrieval of Image Data”, IEEE Trans Patt Recog Mach Intell, 18(8), pp. 837–842, November, 1996.

    Article  Google Scholar 

  19. Mao J and Jain, AK, “Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models”, Patt Recog, 25(2), pp. 173–188, 1992.

    Article  Google Scholar 

  20. Minka, TP and Picard, RW, “Interactive Learning Using a Society of Models”, IEEE Conf. on Computer Vision and Pattern Recognition, 1996.

    Google Scholar 

  21. Ohanian P and Dubes, RC, “Performance Evaluation for Four Classes of Texture Features”, Patt Recogn, 25(8), pp. 819–833, 1992.

    Article  Google Scholar 

  22. Picard, RW and Minka, TP, “Vision Texture for Annotation”, ACM Multimed Syst, 3(1), pp. 1–11, 1995.

    Article  Google Scholar 

  23. Rui, Y, Huang, TS, and Mehrotra, S, “Content-Based Image Retrieval with Relevance Feedback in MARS”, IEEE Int. Conf. on Image Proc., 1997.

    Google Scholar 

  24. Rui, Y, Huang, TS, Mehrotra, S, and Ortega, M, “Automatic Matching Tool Selection Using Relevance Feedback in MARS”, 2nd Int. Conf. on Visual Information Systems, 1997.

    Google Scholar 

  25. Rui, Y, Huang, TS, and Mehrotra, S, “Relevance Feedback Techniques in Interactive Content-Based Image Retrieval”, IIS&T SPIE Storage and Retrieval of Images/Video Databases VI, EI’98, 1998.

    Google Scholar 

  26. Rui, Y, Huang, TS, Ortega, M, and Mehrotra, S, “Relevance Feedback: A Power Tool in Interactive Content-Based Image Retrieval”, IEEE Trans Circ Syst Video Technol, 8(5), pp. 644–655, September, 1998.

    Article  Google Scholar 

  27. Salton G and McGill, MJ, Introduction to Modern Information Retrieval, McGraw-Hill Book Company, New York, 1982.

    Google Scholar 

  28. Sclaroff, S, Taycher, L, and La Cascia, M, “ImageRover: A Content-Based Image Browser for the World Wide Web”, IEEE Workshop on Content-Based Access of Image and Video Libraries, 1997.

    Google Scholar 

  29. Shaw, WM, “Term-Relevance Computations and Perfect Retrieval Performance”, Inform Process Manag, 31(4), pp. 491–498, 1995.

    Article  Google Scholar 

  30. Smith JR and Chang, SF, “Transform Features for Texture Classification and Discrimination in Large Image Databases”, IEEE Int. Conf. on Image Processing, 1994.

    Google Scholar 

  31. Smith JR and Chang, SF, “Visually Searching the Web for Content”, IEEE Multimed Mag, 4(3), pp. 12–20, Summer, 1997.

    Article  Google Scholar 

  32. Smith JR and Chang, SF, “An Image and Video Search Engine for the World-Wide Web”, SPIE Storage and Retrieval for Image and Video Databases, 1997.

    Google Scholar 

  33. Swain M and Ballard, D, “Color Indexing”, Int J Comput Vis, 7(1), pp. 11–32, 1991.

    Article  Google Scholar 

  34. Tamura, H, Mori, S, and Yamawaki, T, “Texture Features Corresponding to Visual Perception”, IEEE Trans on Syst Man Cybern, SMC-8(6), pp. 460–473, 1978.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Rui, Y., Huang, T.S. (2001). Relevance Feedback Techniques in Image Retrieval. In: Lew, M.S. (eds) Principles of Visual Information Retrieval. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-3702-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3702-3_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-868-3

  • Online ISBN: 978-1-4471-3702-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics