Skip to main content

Texture Features for Content-Based Retrieval

  • Chapter
Principles of Visual Information Retrieval

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Texture is an intuitive concept. Every child knows that leopards have spots but tigers have stripes, that curly hair looks different from straight hair, etc. In all these examples there are variations of intensity and color which form certain repeated patterns called visual texture. The patterns can be the result of physical surface properties such as roughness or oriented strands which often have a tactile quality, or they could be the result of reflectance differences such as the color on a surface. Even though the concept of texture is intuitive (we recognize texture when we see it), a precise definition of texture has proven difficult to formulate. This difficulty is demonstrated by the number of different texture definitions attempted in the literature [7, 12, 38, 65, 70].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, N and Rosenfeld, A, “Mosaic Models for Textures”, IEEE Trans Patt Anal Mach Intell, 3, pp. 1–10, 1981.

    Article  Google Scholar 

  2. Austin, J, “Grey Scale N-tuple Processing”, International Conference on Pattern Recognition, pp. 110-120, 1988.

    Google Scholar 

  3. Barba, D and Ronsin, J, “Image Segmentation Using New Measure of Texture Feature”, Digital Signal Processing, Elsevier-North-Holland, pp. 749-753, 1984.

    Google Scholar 

  4. Beck, J, Sutter, A, and Ivry, A, “Spatial Frequency Channels and Perceptual Grouping in Texture Segregation”, Computer Vision Graphics Image Process, 37, pp. 299–325, 1987.

    Article  Google Scholar 

  5. Bergen, JR and Adelson, EH, “Early Vision and Texture Perception”, Nature, 333, pp. 363–364, 1988.

    Article  Google Scholar 

  6. Bolt, G, Austin, J, and Morgan, G, “Uniform Tuple Storage in ADAM”, Patt Recogn Lett, 13, pp. 339–344, 1992.

    Article  Google Scholar 

  7. Bovik, A, Clarke, M, and Geisler, W, “Multichannel Texture Analysis Using Localized Spatial Filters”, IEEE Trans on Patt Anal Mach Intell, 12, pp. 55–73, 1990.

    Article  Google Scholar 

  8. Brodatz, P, “Textures: A Photographic Album for Artists and Designers”, Dover Publications, 1966.

    Google Scholar 

  9. Caelli, T, Julesz, B, and Gilbert, E, “On Perceptual Analyzers Underlying Visual Texture Discrimination: Part II”, Biol Cybern, 29(4), pp. 201–214, 1978.

    Article  Google Scholar 

  10. Campbell, FW and Robson, JG, “Application of Fourier Analysis to the Visibility of Gratings”, J Physiol, 197, pp. 551–566, 1968.

    Google Scholar 

  11. Carson, C, Thomas, M, Belongie, S, Hellerstein, J, and Malik, J, “Blobworld: A System for Region-Based Image Indexing and Retrieval”, Conf. on Visual Information and Information Systems, pp. 509-516, 1999.

    Google Scholar 

  12. Chaudhuri, B, Sarkar, N, and Kundu, P, “Improved Fractal Geometry Based Texture Segmentation Technique”, Proc IEE, 140, pp. 233–241, 1993.

    Google Scholar 

  13. Chellappa, R and Chatterjee, S, “Classification of Textures Using Gaussian Markov Random Fields”, IEEE Trans Acoust Speech Sig Process, 33, pp. 959–963, 1985.

    Article  MathSciNet  Google Scholar 

  14. Chellappa, R, Chatterjee, S, and Bagdazian, R, “Texture Synthesis and Compression Using Gaussian Markov Random Fields Models”, IEEE Trans Syst Man Cybern, 15, pp. 298–303, 1985.

    Article  Google Scholar 

  15. Chen, Y, Nixon, M, and Thomas, D, “Statistical Geometrical Features for Texture Classification”, Patt Recogn, 4, pp. 537–552, 1995.

    Article  Google Scholar 

  16. Clark, M and Bovik, A, “Texture Segmentation Using Gabor Modulation/Demodulation”, Patt Recogn Lett, 6, pp. 261–267, 1987.

    Article  Google Scholar 

  17. Conners, R and Harlow, C, “A Theoretical Comparison of Texture Algorithms”, IEEE Trans Patt Anal Mach Intell, 2, pp. 204–222, 1980.

    Article  MATH  Google Scholar 

  18. Cross, G and Jain, AK, “Markov Random Field texture models”, IEEE Trans Patt Anal Mach Intell, 5, pp. 25–39, 1983.

    Article  Google Scholar 

  19. Daugman, J, “Two-Dimensional Spectral Analysis of Cortical Receptive Profiles”, Vision Res, 20, pp. 847–856, 1980.

    Article  Google Scholar 

  20. Daugman, J, “Uncertainty Relation for Resolution in Space, Spatial Frequency and Orientation Optimized by Two-Dimensional Visual Cortical Filters”, J Opt Soc of Am, A 4, pp. 221–231, 1985.

    Google Scholar 

  21. Daugman, J, “Entropy Reduction and Decorrelation in Visual Coding by Oriented Neural Receptive Fields”, IEEE Trans Biomed Eng, 36, 1989.

    Google Scholar 

  22. Derin, H and Cole, W, “Segmentation of Textured Images Using Gibbs Random Fields”, Computer Vision, Graphics Image Process, 35, pp. 72–98, 1986.

    Article  Google Scholar 

  23. Derin, H and Elliott, H, “Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields”, IEEE Trans Patt Anal Mach Intell, 9, pp. 39–55, 1987.

    Article  Google Scholar 

  24. De Souza, P, “Texture Recognition via Autoregression”, Patt Recogn, 15, pp. 471–475, 1982.

    Article  Google Scholar 

  25. De Valois, RL, Albrecht, DG, and Thorell, LG, “Spatial-Frequency Selectivity of Cells in Macaque Visual Cortex”, Vision Res, 22, pp. 545–559, 1982.

    Article  Google Scholar 

  26. Dubes, RC and Jain, AK, “Random Field Models in Image Analysis”, J Appl Statist, 16(2), pp. 131–164, 1989.

    Article  Google Scholar 

  27. Du Buf, J, Kardan, M, and Spann, M, “Texture Feature Performance for Image Segmentation”, Patt Recogn, 23, pp. 291–309, 1990.

    Article  Google Scholar 

  28. Flicker, M, Sawhney, H, Niblack, W, Ashley, J, Huang, Q, Dom, B, Gorkani, M, Hafner, J, Lee, D, Petkovic, D, Steele, D, and Yanker, P, “Query by Image and Video Content: The QBIC System”, IEEE Computer, 28(9), pp. 23–32, 1995.

    Article  Google Scholar 

  29. Francos, J, Meiri, A, and Porat, B, “A Unified Texture Model Based on a 2-D Wold-Like Decomposition”, IEEE Trans Sig Process, 41, pp. 2665–2678, 1993.

    Article  MATH  Google Scholar 

  30. Francos, J, “Orthogonal Decompositions of 2-D Random Fields and Their Applications in 2-D Spectral Estimation”, Sign Process Applics, Handbook Statist, 41, pp. 207–227, 1993.

    Google Scholar 

  31. Francos, J, Narasimhan, A, and Woods, J, “Maximum Likelihood Parameter Estimation of Discrete Homogeneous Random Fields with Mixed Spectral Distributions”, IEEE Trans Sig Process, 44(5), pp. 1242–1255, 1996.

    Article  Google Scholar 

  32. Fu, K, Syntactic Pattern Recognition and Applications, Prentice-Hall, 1982.

    Google Scholar 

  33. Galloway, MM, “Texture Analysis Using Gray Level Run Lengths”, Computer Vision Graphics Image Process, 4, pp. 172–179, 1975.

    Article  Google Scholar 

  34. Gorkani, M and Picard, R, “Texture Orientation for Sorting Photos ‘at a glance’”, Int. Conf. on Patern Recognition, 1, pp. 459–464, 1994.

    Google Scholar 

  35. Haindl, M, “Texture Synthesis”, CWI Quart, 4, pp. 305–331, 1991.

    MATH  Google Scholar 

  36. Hall, T and Gainnakis, G, “Texture Model Validation Using Higher-Order Statistics”, Int Conf. on Acoustics, Speech and Signal Processing, pp. 2673-2676, 1991.

    Google Scholar 

  37. Haralick, RM, Shanmugam, K, and Dinstein, I, “Textural Features for Image Classification”, IEEE Trans Syst Man Cybern, 3(6), pp. 610–621, 1973.

    Article  Google Scholar 

  38. Haralick, RM, “Statistical and Structural Approaches to Texture”, Proc IEEE, 67, pp. 786–804, 1979.

    Article  Google Scholar 

  39. Hassner, M and Slansky, J, “The Use of Markov Random Fields as Models of Texture”, Computer Vision Graphics Image Process, 12, pp. 357–360, 1980.

    Article  Google Scholar 

  40. Hsu, S, “A texture-Tone Analysis for Automated Landuse Mapping with Panchromatic Images”, Proc. of the American Society of Photogrammetry, pp. 203-215, 1977.

    Google Scholar 

  41. Jain, AK and Farrokhina, F, “Unsupervised Texture Segmentation Using Gabor Filters”, Patt Recogn, 24, pp. 1167–1186, 1991.

    Article  Google Scholar 

  42. Julesz, B, Gilbert, EN, Shepp, LA, and Frisch, HL, “Inability of Humans to Discriminate Between Visual Textures that Agree in Second-Order Statistics”, Perception, 2, pp. 391–405, 1973.

    Article  Google Scholar 

  43. Julesz, B, “Experiments in the Visual Perception of Texture”, Scient Am, 232, pp. 34–43, 1975.

    Article  Google Scholar 

  44. Julesz, B, “Textons, the Elements of Texture Perception and Their Interactions”, Nature, 290, pp. 91–97, 1981.

    Article  Google Scholar 

  45. Julesz, B, “A Theory of Preattentive Texture Discrimination Based on First-Order Statistics of Textons”, Biol Cybern, 41(2), pp. 131–138, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  46. Keller, J and Chen, S, “Texture Description and Segmentation Through Fractal Geometry”, Computer Vision Graphics Image Process, 45, pp. 150–166, 1989.

    Article  Google Scholar 

  47. Kundu, A and Chen, J-L, “Texture Classification Using QMF Bank-Based Subband Decomposition”, CVGIP: Graph Models Image Process, 54, pp. 407–419, 1992.

    Article  Google Scholar 

  48. Laws, KI, “Textured Image Segmentation”, PhD thesis, University of Southern California, 1980.

    Google Scholar 

  49. Liu, F and Picard, R, “Periodicity, Directionality and Randomness: Wold Features for Image Modeling and Retrieval”, IEEE Trans Patt Anal Mach Intell, 18, pp. 722–733, 1996.

    Article  Google Scholar 

  50. Liu, F and Picard, R, “A Spectral 2-D Wold Decomposition Algorithm for Homogeneous Random Fields”, IEEE Conf. on Acoustics, Speech and Signal Processing, 6, pp. 3501–3504, 1999.

    Google Scholar 

  51. Ma, WY and Manjunath, BS, “Texture Features and Learning Similarity”, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 425-430, 1996.

    Google Scholar 

  52. Ma, WY and Manjunath, BS, “A Texture Thesaurus for Browsing Large Aerial Photographs”, J Am Soc Inform Sci, 49(7), pp. 633–648, 1998.

    Article  Google Scholar 

  53. Malik, J and Perona, P, “Preattentive Texture Discrimination with Early Vision Mechanisms”, J Opt Soc Am, A 7, pp. 923–932, 1990.

    Article  Google Scholar 

  54. Manjunath, BS, Simchony, T, and Chellappa, R, “Stochastic and Deterministic Networks for Texture Segmentation”, IEEE Trans Acoust Speech Sig Process, 38, pp. 1039–1049, 1990.

    Article  Google Scholar 

  55. Ogle, V and Stonebracker, M, “Chabot: Retrieval from a Relational Database of Images”, Computer, 28(9), pp. 40–48, 1995.

    Article  Google Scholar 

  56. Ojala, T, Pietikainen, M, and Harwood, D, “A Comparative Study of Texture Measures with Classification Based on Feature Distribution”, Patt Recogn, 29, pp. 51–59, 1996.

    Article  Google Scholar 

  57. Pentland, A, “Fractal-Based Description of Natural Scenes”, IEEE Trans Patt Anal Mach Intell, 6, pp. 661–672, 1984.

    Article  Google Scholar 

  58. Pentland, A, Picard, R, and Sclaroff, S, “Photobook: Content-Based Manipulation of Image Databases”, Int J Computer Vision, 18, pp. 233–254, 1996.

    Article  Google Scholar 

  59. Picard, R, Kabir, T, and Liu, F, “Real-Time Recognition with the Entire Brodatz Texture Database”, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 638-639, 1993.

    Google Scholar 

  60. Picard, R and Liu, F, “A New Wold Ordering for Image Similarity”, IEEE Conf. on Acoustics, Speech and Signal Processing, 5, pp. 129–132, 1994.

    Google Scholar 

  61. Picard, R and Minka, T, “Vision Texture for Annotation”, Multimed Syst, 3(1), pp. 3–14, 1995.

    Article  Google Scholar 

  62. Ramsey, M, Chen, H, Zhu, B, and Schatz, B, “A Collection of Visual Thesauri for Browsing Large Collections of Geographic Images”, J Am Soc Informa Sci, 50(9), pp. 826–834, 1999.

    Article  Google Scholar 

  63. Rao, A and Lohse, G, “Towards a Texture Naming System: Identifying Relevant Dimensions of Texture”, IEEE Conf. on Visualization, 1993.

    Google Scholar 

  64. Read, J and Jayaramamurthy, S, “Automatic Generation of Texture Feature Detectors”, IEEE Trans Computers, C-21, pp. 803–812, 1972.

    Article  Google Scholar 

  65. Richards, W and Polit, A, “Texture Matching”, Kybernetic, 16, pp. 155–162, 1974.

    Article  Google Scholar 

  66. Smith, JR and Chang, SF, “VisualSEEk: A Fully Automated Content-Based Image Query System”, ACM Multimedia, pp. 87-98, 1996.

    Google Scholar 

  67. Smith, JR and Chang, SF, “Transform Features for Texture Classification and Discrimination in Large Image Databases”, Int. Conf. Image Processing, pp. 407-411, 1996.

    Google Scholar 

  68. Smith, G, “Image Texture Analysis Using Zero Crossing Information”, PhD Thesis, University of Queensland, 1998.

    Google Scholar 

  69. Super, B and Bovik, A, “Localized Measurement of Image Fractal Dimension Using Gabor Filters”, J Visual Commun Image Represent, 2, pp. 114–128, 1991.

    Article  Google Scholar 

  70. Tamura, H, Mori, S, and Yamawaki, Y, “Textural Features Corresponding to Visual Perception”, IEEE Trans Syst Man Cybern, 8, pp. 460–473, 1978.

    Article  Google Scholar 

  71. Therrien, C, “An Estimation-Theoretic Approach to Terrain Image Segmentation”, Computer Vision Graphics Image Process, 22, pp. 313–326, 1983.

    Article  Google Scholar 

  72. Tuceryan, M and Jain, AK, “Texture Segmentation Using Voronoi Polygons”, IEEE Trans Patt Anal Mach Intell, 12, pp. 211–216, 1990.

    Article  Google Scholar 

  73. Tuceryan, M and Jain, AK, “Texture Analysis”, Handbook of Pattern Recognition and Computer Vision, pp. 235-276, 1993.

    Google Scholar 

  74. Turner, M, “Texture Discrimination by Gabor Functions”, Biol Cybern, 55, pp. 71–82, 1986.

    Google Scholar 

  75. van Gool, L, Dewael, P, and Oosterlinck, A, “Texture Analysis Anno 1983”, Computer Vision Graphics Image Process, 29, pp. 336–357, 1985.

    Article  Google Scholar 

  76. Voorhees, H and Poggio, T, “Computing Texture Boundaries in Images”, Nature, 333, pp. 364–367, 1988.

    Article  Google Scholar 

  77. Voss, R, “Random Fractals: Characterization and Measurement”, in Scaling Phenomena in Disordered Systems, Plenum, New York, 1986.

    Google Scholar 

  78. Wang L and He, D, “Texture Classification Using Texture Spectrum”, Patt Recogn, 23, pp. 905–910, 1991.

    Article  Google Scholar 

  79. Wechsler, H, “Texture Analysis — A Survey”, Sig Process, 2, pp. 271–282, 1980.

    Article  Google Scholar 

  80. Weszka, J, Dyer, C, and Rosenfeld, A, “A Comparative Study of Texture Measures for Terrain Classification”, IEEE Trans Syst Man Cybern, 6, pp. 265–269, 1976.

    Google Scholar 

  81. Zucker, S, “Toward a Model of Texture”, Computer Graphics Image Process, 5, pp. 190–202, 1976.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Sebe, N., Lew, M.S. (2001). Texture Features for Content-Based Retrieval. In: Lew, M.S. (eds) Principles of Visual Information Retrieval. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-3702-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3702-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-868-3

  • Online ISBN: 978-1-4471-3702-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics