Genetic Metabolic Disease

  • David Fitzpatrick


The terms inborn error of metabolism, genetic metabolic disease, disorders of intermediary metabolism and inherited metabolic disease are often used interchangeably. For the sake of clarity inborn error of metabolism (IEM) will be used throughout this chapter. The common feature of these disorders is a genetically determined interruption in one (or several related) metabolic pathway. This results in clinical symptoms caused by deficiency of the pathway product and/or toxicity resulting from the accumulation of an intermediary compound (Fig. 5.1). IEMs almost always behave as recessive disorders with clinical symptoms rare in heterozygous individuals. The molecular pathology of IEMs usually involve homozygous (autosomal) or hemizygous (X-linked) mutations in genes encoding proteins with a single enzymatic function.


Inborn Error Maple Syrup Urine Disease Maple Syrup Urine Disease Very Long Chain Fatty Acid Mevalonate Kinase Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr DGD, Kirk JM, Al Howasi M, Wanders RJA, Schutgens RBH (1993) Rhizomelic chondrodysplasia punctata with isolated DHAP-AT deficiency. Arch Dis Child 68:415–417PubMedCrossRefGoogle Scholar
  2. Batshaw ML, Thomas GH, Brusilow SW (1980) New approaches to the diagnosis and treatment of inborn errors of urea synthesis. Pediatrics 68:290–297Google Scholar
  3. Beckman DR, Hoganson G, Berlow S, Gilbert EF (1987) Pathological findings in 5,10-methylenetetrahydrofolate reductase deficiency. Birth Defects 23:47–64PubMedGoogle Scholar
  4. Berger R, Smit GPA, Schierbeek H, Bijsterveld K, le Coultre R (1985) Mevalonic aciduria: an inborn error of cholesterol biosynthesis? Clin Chim Acta 152 219–222PubMedCrossRefGoogle Scholar
  5. Brown GK (1994) Metabolic disorders of embryogenesis. J Inherit Metab Dis 17: 448–458PubMedCrossRefGoogle Scholar
  6. Brown GK, Squier MV (1996) Neuropathology and pathogenesis of mitochondrial diseases. J Inher Metab Dis 19:553–572PubMedCrossRefGoogle Scholar
  7. Brown GK, Hunt SM, Scholem R et al. (1982) ß-hydroxyisobutyryl coenzyme A deacylase deficiency: A defect in valine metabolism associated with physical malformations. Pediatrics 70:532–538PubMedGoogle Scholar
  8. Brown GK, Brown RM, Scholem RD, Kirby DM, Dahl H-HM (1989) The clinical and biochemical spectrum of human pyruvate dehydrogenase complex deficiency Ann NY Acad Sci 573:360–368PubMedCrossRefGoogle Scholar
  9. Bowen P, Lee CSN, Zellweger H, Lindenberg R (1964). A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp 114:402–414PubMedGoogle Scholar
  10. Burton BK (1987) Inborn errors of metabolism: the clinical diagnosis in early infancy. Pediatrics 79:359–369PubMedGoogle Scholar
  11. Chen Y-T, Burchell A (1995). Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edition. McGraw Hill, New York.Google Scholar
  12. Chitayat D, Meagher-Villemure M, Mamer OA, O’Gorman A, Hoar DI, Silver K, Scriver CR (1992) Brain dysgenesis and congenital intracerebral calcification associated with 3-hydroxyisobutyric aciduria. J Pediatr 121:86–89PubMedCrossRefGoogle Scholar
  13. Chuang DT, Shih VE (1995) Disorders of branched chain amino acid and keto acid metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edition. McGraw Hill, New York.Google Scholar
  14. Clayton PT (1991) Inborn errors of bile acid metabolism. J Inher Metab Dis 14:478–496PubMedCrossRefGoogle Scholar
  15. Clayton PT, Thompson E (1988) Dysmorphic syndromes with demonstrable biochemical abnormalities. J Med Genet 25:463–472PubMedCrossRefGoogle Scholar
  16. Clayton PT, Mills K, Keeling J, FitzPatrick DR (1996) Desmosterolosis: a new inborn error of cholesterol biosynthesis. Lancet 348:404PubMedCrossRefGoogle Scholar
  17. Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwright E (1972) Menkes’ kinky hair syndrome: an inherited defect in copper absorption with widespread effects. Pediatrics 50:188–201PubMedGoogle Scholar
  18. Dobyns WB (1989) Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology 39:817–820PubMedCrossRefGoogle Scholar
  19. Engel AG, Gomez MR, Seybold ME, Lambert EH (1973) The spectrum and diagnosis of acid maltase deficiency. Neurology 23:95–106PubMedCrossRefGoogle Scholar
  20. Erbe RW (1986) Inborn errors of folate metabolism. In: Blakley RL, Whitehead VM (eds) Folates and pterins, Vol. 3 (Nutritional, pharmacological and physiological aspects). John Wiley, New YorkGoogle Scholar
  21. Evrard P, Caviness VS, Prats-Vinas J, Lyon G (1978) The mechanism of arrest of neuronal migration in the Zellweger malformation: an hypothesis based upon cytoarchitectonic analysis. Acta Neuropathol (Berl) 41:109–117CrossRefGoogle Scholar
  22. Fenton WA, Rosenberg LE (1995) Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edition. McGraw Hill, New York.Google Scholar
  23. FitzPatrick DR (1996) Syndrome of the month: Zellweger syndrome and associated phenotypes (ZSAP). J Med Genet 33:863–868CrossRefGoogle Scholar
  24. Fowler GW, Sukoff M, Hamilton A, Williams JP (1975) Communicating hydrocephalus in children with genetic inborn errors of metabolism. Childs Brain 1:251–254PubMedGoogle Scholar
  25. Garrod AG (1909) Inborn errors of metabolism. Oxford University Press, OxfordGoogle Scholar
  26. Gilbert EF, Opitz JM, Spranger JW, Langer LO Jr, Wolfson JJ, Viseskul C (1976) Chondrodysplasia punctata — rhizomelic form: pathologic and radiologic studies of three infants. Eur J Pediat 12:89–109CrossRefGoogle Scholar
  27. Gilchrist KW, Gilbert EF, Shahidi NT, Opitz JM (1975) The evaluation of infants with the Zellweger (cerebro-hepato-renal) syndrome. Clin Genet 7:413–416PubMedCrossRefGoogle Scholar
  28. Glasgow AM, Engel AG, Bier DM et al.(1983) Hypoglycemia, hepatic dysfunction, muscle weakness, cardiomyopathy, free carnitine deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr Res 17:319–326PubMedCrossRefGoogle Scholar
  29. Goldfischer S, Moore CL, Johnson AB et al. (1973). Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64PubMedCrossRefGoogle Scholar
  30. Goldfischer S, Collins J, Rapin I et al. (1986) Pseudo-Zellwegers syndrome: deficiencies in several peroxisomal oxidative activities. J Pediatr 108:25–32PubMedCrossRefGoogle Scholar
  31. Hayasaka K, Tada K, Fueki N et al. (1987) Nonketotic hyperglycinemia: analyses of glycine cleavage system in typical and atypical cases. J Pediatr 110:873–877PubMedCrossRefGoogle Scholar
  32. Heikoop JC, Van den Berg M, Strijland A et al. (1991) Peroxisomes of normal morphology but deficient in 3-oxoacyl-CoA thiolase in rhizomelic chondrodysplasia punctata. Biochim Biophys Acta 1097:62–70PubMedCrossRefGoogle Scholar
  33. Hoffmann G, Gibson KM, Brandt IK, Bader PI, Wappner RS, Sweetman L (1986) Mevalonic aciduria; an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med 314:1610–1614PubMedCrossRefGoogle Scholar
  34. Hoffmann GF, Charpentier C, Mayatepek E et al. (1993) Clinical and biochemical phenotype in 11 patients with mevalonic aciduria. Pediatrics 91:915–921PubMedGoogle Scholar
  35. Hoganson G, Berlow S, Gilbert EF, Frerman F, Goodman S, Schweitzer L (1987) Glutaric acidemia type II and flavin-dependent enzymes in morphogenesis. In: Gilbert EF, Opitz JM (eds) Genetic aspects of developmental pathology. Birth defects: Original article series, Vol 23. Alan R. Liss, New YorkGoogle Scholar
  36. Hoppel CL, Kerr DS, Dahms B, Roessmann U (1987) Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport: Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest 80:71–77PubMedCrossRefGoogle Scholar
  37. Horslen SP, Clayton PT, Harding BN, Hall NA, Keir G, Winchester B (1991) Olivopontocerebellar atrophy of neonatal onset and disialotransferrin developmental deficiency syndrome. Arch Dis Child 66:1027–1032PubMedCrossRefGoogle Scholar
  38. Hsia YE, Scully KJ, Rosenberg LE (1969) Defective propionate carboxylation in ketotic hyperglycinemia. Lancet 1:757–758PubMedCrossRefGoogle Scholar
  39. Hsia YE, Scully KJ, Rosenberg LE (1971) Inherited propionyl-CoA carboxylase deficiency in “ketotic hyperglycinemia”. J Clin Invest 50:127–130PubMedCrossRefGoogle Scholar
  40. Jauniaux E, van Maldergem L, de Munter C, Moscoso G, Gillerot Y (1990) Nonimmune hydrops fetalis associated with genetic abnormalities. Obstet Gynecol 75: 568–572PubMedGoogle Scholar
  41. Kalter H, Warkany J (1983) Congenital malformations: etiological factors and their role in prevention. N Engl J Med 308:425–431Google Scholar
  42. Kattner E, Schafer A, Harzer K (1997) Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease. Eur J Pediatr 156:292–295PubMedCrossRefGoogle Scholar
  43. Kronick JB, Scriver CR, Goodyer PR, Kaplan PB (1983) A perimortem protocol for suspected genetic disease. Pediatrics 71:960–963PubMedGoogle Scholar
  44. Lazarow PB, Moser HW (1995) Disorders of peroxisome biogenesis. In: Scriver CR, Beaudet AL, Sly WS, Vahe D (eds) The metabolic and molecular basis of inherited disease, 7th edition. McGraw- Hill, New York, pp. 2287–2324Google Scholar
  45. Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyper-phenylalaninemia. An international survey of untreated and treated pregnancies. N Engl J Med 303:1202–1208PubMedCrossRefGoogle Scholar
  46. Machin GA (1989) Hydrops reviewed: literature review of 1414 cases published in the 1980s. Am J Med Genet 34: 366–390PubMedCrossRefGoogle Scholar
  47. Markand ON, Garg BP, Brandt IK (1982) Nonketotic hyperglycinemia: Electroencephalographic and evoked potential abnormalities. Neurology 32:151–156PubMedCrossRefGoogle Scholar
  48. McGuiness MC, Moser AB, Poll-The BT, Watkins PA (1993) Complementation analysis of patients with intact peroxisomes and impaired peroxisomal beta-oxidation. Biochem Med Metabol Biol 49:228–242CrossRefGoogle Scholar
  49. Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inher Metab Dis 13:321–324PubMedCrossRefGoogle Scholar
  50. Moser HW, Moser A (1991) Measurement of saturated very long chain fatty acids in plasma. In: Techniques in diagnostic human biochemical genetics: a laboratory manual. Wiley-Liss, Inc., New York, pp. 180–191Google Scholar
  51. Munnich A, Rustin P, Rotig A et al. (1992) Clinical aspects of mitochondrial disorders. J Inher Metab Dis 15:448–455PubMedCrossRefGoogle Scholar
  52. Perry TL (1967) Tyrosinemia associated with hypermethioninemia and islet cell hyperplasia. Can Med Ass J 97:1067–1075PubMedGoogle Scholar
  53. Remes AM, Rantala H, Hiltunen JK, Leisti J, Ruokonen A (1992) Fumarase deficiency: Two siblings with enlarged cerebral ventricles and polyhydramnios in utero. Pediatrics 89:730–734PubMedGoogle Scholar
  54. Rhead WJ, Tanaka K (1980) Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA 77:580–583PubMedCrossRefGoogle Scholar
  55. Robinson BH, Oei J, Sherwood WG et al. (1984) The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 36:283–294PubMedGoogle Scholar
  56. Robinson BH, MacMillan H, Petrova-Benedict R, Sherwood WG (1987) Variable clinical presentation in patients with deficiency of the pyruvate dehydrogenase complex. A review of 30 cases with a defect in the El component of the complex. J Pediatr 111:525–533PubMedCrossRefGoogle Scholar
  57. Roth A, Nogues C, Monnet JP, Ogier H, Saudubray JM (1985) Anatomopathological findings in a case of combined deficiency of sulphite oxidase and xanthine oxidase with a defect of molybdenum cofactor. Virchows Arch [A] 405:379–386CrossRefGoogle Scholar
  58. Rotig A, Cormier V, Blanche S et al. (1990) Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest 86:1601–1608PubMedCrossRefGoogle Scholar
  59. Saudubray JM, Ogier H, Bonnefont JP et al.(1989) Clinical approach to inherited metabolic diseases in the neonatal period: A 20-year survey. J Inher Metab Dis (suppl 1) 12:25–41CrossRefGoogle Scholar
  60. Scriver CR, White A, Sprague W, Horwood SP (1975) Plasma-CSF glycine ratios in normal and nonketotic hyperglycinemia subjects. N Engl J Med 293:778PubMedGoogle Scholar
  61. Shih V, La Framboise R, Mandell R, Pichette J (1992) Neonatal form of the hyperornithinaemia, hyperammonaemia and homocitrullinuria (HHH) syndrome and prenatal diagnosis. Prenat Diagn 12:717–723PubMedCrossRefGoogle Scholar
  62. Shoffner JM, Wallace DC (1995) Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edition. McGraw Hill, New YorkGoogle Scholar
  63. Silberman J, Dancis J, Feigin I (1961) Neuropathological observations in maple syrup urine disease. Arch Neurol 5:351PubMedCrossRefGoogle Scholar
  64. Silver MM, Beverley DW, Valberg LS, Cutz E, Phillips MJ, Shaheed WA (1987) Perinatal hemochromatosis: Clinical, morphologic and quantitative iron studies. Am J Pathol 128:538–554PubMedGoogle Scholar
  65. Sims HF, Brackett JC, Powell CK et al. (1995) The molecular basis of pediatric LCHAD deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci USA 92:841–845PubMedCrossRefGoogle Scholar
  66. Sveger T (1976) Liver disease in alphal-antitrypsin deficiency detected by screening of 200 000 infants. N Engl J Med 294:1316–1321PubMedCrossRefGoogle Scholar
  67. Tanaka K, Budd MA, Efron ML, Isselbacher KJ (1966) Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sei USA 56:236–242CrossRefGoogle Scholar
  68. Theil AC, Schutgens RBH, Wanders RJA, Heymans HAS (1992) Clinical recognition of patients affected by a peroxisomal disorder: a retrospective study in 40 patients. Eur J Paediatr 151:117–120CrossRefGoogle Scholar
  69. Tint GS, Irons M, Elias ER et al. (1994) Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. New Engl J Med 330: 107–113PubMedCrossRefGoogle Scholar
  70. Tritschler H J, Bonilla E, Lombes A et al. (1991) Differential diagnosis of fatal and benign cytochrome c oxidase-deficient myopathies of infancy: an immunohistochemical approach. Neurology 41:300–305PubMedCrossRefGoogle Scholar
  71. Volpe JJ, Adams RD (1972) Cerebrohepatorenal syndrome of Zellweger: an inherited disorder of neuronal migration. Acta Neuropatol (Berl) 41:175–198CrossRefGoogle Scholar
  72. Von Wendt L, Similä S, Saukkonen A-L, Koivisto M, Kouvalainen K (1981) Prenatal brain damage in nonketotic hyperglycinemia. Am J Dis Child 135:1072Google Scholar
  73. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13PubMedCrossRefGoogle Scholar
  74. Waggoner DD, Buist NRM, Donnel GN (1990) Long-term prognosis in galactosaemia: Results of a survey of 350 cases. J Inher Metab Dis 13:802–818PubMedCrossRefGoogle Scholar
  75. Wolf B, Hsia YE, Sweetman L, Gravel R, Harris DJ, Nyhan WL (1981) Propionic acidemia: a clinical update. J Pediatr 99:835–846PubMedCrossRefGoogle Scholar
  76. Yajima S, Suzuki T, Shimozawa N et al. (1992) Complementation study of peroxisome-defkient disorders by immunofluorescence staining and characterization of fused cells. Hum Genet 88:491–499PubMedCrossRefGoogle Scholar
  77. Zellweger H (1987) The cerebro-hepato-renal (Zellweger) syndrome and other peroxisomal disorders. Dev Med Child Neurol 29:821–825PubMedCrossRefGoogle Scholar
  78. Zhang FL, Casey PJ. (1996) Protein prenylation - molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2001

Authors and Affiliations

  • David Fitzpatrick

There are no affiliations available

Personalised recommendations