Advertisement

Skeletal Muscle and Peripheral Nerves

  • J. Patrick Barbet
Chapter

Abstract

Skeletal muscle is a very specialized tissue made up of several different types of muscle fibres. These fibres differ both in their physical properties (speed of contraction, resistance to fatigue) and in the composition of their contractile proteins. Enzyme-histochemical studies of oxidative enzymes and of myofibrillar ATPase, immunocytochemical studies using antibodies specific for different myosin isoforms have made it possible to characterize at the light microscopic level the slow (type I) and fast (type II, with two sub groups -IIA and -IIB) contracting muscle fibres.

Keywords

Muscular Dystrophy Myosin Heavy Chain Spinal Muscular Atrophy Duchenne Muscular Dystrophy Myotonic Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler MW, Neave C, Singer DB (1984) X-linked recessive myotubular myopathy: II. Muscle morphology and human myogenesis. Human Pathol 15:1107–1120CrossRefGoogle Scholar
  2. Argov Z, Gardner-Medwin D, Johnson MA, Mastaglia FL (1984) Patterns of muscle fiber-type disproportion in hypotonic infants. Arch Neurol 41:53–57PubMedCrossRefGoogle Scholar
  3. Arthuis M, Pinsard N, Ponsot G (eds) (1990) Neurologie pédiatrique. Flammarion, ParisGoogle Scholar
  4. Aslanidis C, Jansen G, Amemiya C et al. (1992) Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature 355:548–551PubMedCrossRefGoogle Scholar
  5. Banker BQ (1986) Congenital deformities. In: Engel AG, Banker BQ (eds) Myology. McGraw-Hill, New York, pp. 2109–2159Google Scholar
  6. Barbet JP (1993) Skeletal muscle and nerve. In: Keeling JW (ed.) Fetal and neonatal pathology, 2nd edn. Springer, London, pp. 595–618Google Scholar
  7. Barbet JP (1997) Pathologie embryo-foetale. Masson, ParisGoogle Scholar
  8. Barbet JP, Kurzenne JY, Butler-Browne GS, Mouly V, Laurent M, Gubler JP (1989) Rhabdomyosarcomes de découverte néonatale. Etude des marqueurs de différenciation musculaire. Ann Pathol (Paris) 9:363–368Google Scholar
  9. Barbet JP, Thornell L-E, Butler-Browne GS (1991) Immuno-cytochemical characterization of two generations of fibers during the development of the human quadriceps muscle. Mechan Dev 35:3–11CrossRefGoogle Scholar
  10. Barth PG, Van Wijngaarden GH, Bethlem J (1975) X-linked myotubular myopathy with fatal neonatal asphyxia. Neurol 25:531–536CrossRefGoogle Scholar
  11. Bethlem J, Arts WF, Dingemans KP (1978) Common origin of rods, cores, miniature cores, and focal loss of cross-striations. Arch Neurol 35:555–566PubMedCrossRefGoogle Scholar
  12. Billeter R, Weber H, Lutz H, Eppenberger HM, Jenny E (1980) Myosin types in human skeletal muscle fibers. Histochemistry 65:249–259PubMedCrossRefGoogle Scholar
  13. Bradley WG, Hudgson P, Larson PF, Papapetropoulos TA, Jenkison M (1972) Structural changes in the early stages of Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatr 35:451–455PubMedCrossRefGoogle Scholar
  14. Brasseur G, Onolfo JP, Copin H, Leperchey F, Barbet JP (1997) Dégénérescence et régénération des fibres musculaires dans la myopathie de Duchenne. Morphologie 81:9–13PubMedGoogle Scholar
  15. Brook JD, McCurrach ME, Harley HG et al. (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 68:799–808PubMedCrossRefGoogle Scholar
  16. Brooke MH (1973) Congenital fibre type disproportion. In: Kakulas BA (ed.) Clinical studies in myology. Excerpta Medica, Amsterdam, pp. 147–159Google Scholar
  17. Buckingham M (1994) Which myogenic factors make muscle? Current Biol 4:61–63CrossRefGoogle Scholar
  18. Buffinger N, Stockdale FE (1995) Myogenic specification of somite is mediated by diffusible factors. Dev Biol 169:96–108PubMedCrossRefGoogle Scholar
  19. Butler-Browne GS, Whalen RG (1984) Myosin isozymes transitions occuring during post-natal development in the rat soleus muscle. Dev Biol 102:324–334PubMedCrossRefGoogle Scholar
  20. Butler-Browne GS, Barbet JP, Thornell LE (1990) Myosin heavy and light chain expression during human skeletal muscle development and precocious muscle maturation induced by thyroid hormone. Anat Embryol 181:513–522PubMedCrossRefGoogle Scholar
  21. Buxton J, Shelbourne P, Davie SJ et al. (1992) Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355:547–548PubMedCrossRefGoogle Scholar
  22. Carpenter S, Karpati G, Rothman S, Watters G, Andermann F (1978) Pathological involvement of primary sensory neurons in Werdnig-Hoffmann disease. Acta Neuropathol (Berl) 42:91–97CrossRefGoogle Scholar
  23. Carter RL, Jameson CF, Philp ER, Pinkerton CR (1990) Comparative phenotypes in rhabdomyosarcomas and developing skeletal muscle. Histopathol 17:301–309CrossRefGoogle Scholar
  24. Colling-Saltin A-S (1978) Enzyme histochemistry on skeletal muscle of the human foetus. J Neurol Sci 39:169–185PubMedCrossRefGoogle Scholar
  25. Cohn RD, Herrmann R, Sorokin L, Wewer UM, Voit T (1998) Laminin alpha2 chain-deficient congenital muscular dystrophy: variable epitope expression in severe and mild cases. Neurology 51:94–100PubMedCrossRefGoogle Scholar
  26. Condon K, Silberstein L, Blau HM, Thompson WJ (1990a) Development of muscle fiber types in the prenatal rat hindlimb. Dev Biol 138:256–274PubMedCrossRefGoogle Scholar
  27. Condon K, Silberstein L, Blau HM, Thompson WJ (1990b) Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev Biol 138:275–295PubMedCrossRefGoogle Scholar
  28. Cossu G, Tajbakhsh S, Buckingham M (1996) How is myogenesis initiated in the embryo? Trends Genet 12:218–223PubMedCrossRefGoogle Scholar
  29. Cui X, De Vivo I, Slany R, Miyamoto A, Firenstein R, Cleary ML (1998) Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet 18:331–337PubMedCrossRefGoogle Scholar
  30. Dehner LP (1987) Pediatric surgical pathology, 2nd edn. Williams and Wilkins, Baltimore, p. 414Google Scholar
  31. Dyck PJ (1984a) Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds). Peripheral neuropathy. Saunders, Philadelphia, pp. 1557–1599Google Scholar
  32. Dyck PJ (1984b) Inherited neuronal degeneration and atrophy affecting peripheral motor, sensory, and autonomic neurons. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds) Peripheral neuropathy. Saunders, Philadelphia, pp. 1600–1655Google Scholar
  33. Donner M, Rapola J, Somer H (1975) Congenital muscular dystrophy: a clinicopathological and follow-up study. Neuropädiatrie 6:239–258PubMedCrossRefGoogle Scholar
  34. Draeger A, Weeds AG, Fitzsimons RB (1987) Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis. J Neurol Sci 31:245–259Google Scholar
  35. Dubowitz V (1965) Enzyme histochemistry on skeletal muscle. Part II. Developing human muscle. J Neurol Neurosurg Psychiatr 28:519–524Google Scholar
  36. Dubowitz V (1978) Muscle disorders in childhood. Saunders, LondonGoogle Scholar
  37. Dubowitz V (1980) The floppy infant, 2nd edn. William Heinemann, LondonGoogle Scholar
  38. Dubowitz V (ed.) (1985) Muscle biopsy. A practical approach. Baillière Tindall, LondonGoogle Scholar
  39. Ecob-Price M, Hill M, Brown W (1989) Immunocytochemical demonstration of myosin heavy chain expression in human muscle. J Neurol Sci 91:71–78CrossRefGoogle Scholar
  40. Edom-Vovard F, Mouly V, Barbet JP, Butler-Browne GS (1994) Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev Biol 164:219–229CrossRefGoogle Scholar
  41. Edom-Vovard F, Mouly V, Barbet JP, Butler-Browne GS (1998) The four populations of myoblasts involved in human limb muscle formation are present from the onset of primary myotube formation. J Cell Sci 112:191–199Google Scholar
  42. Engel WK (1984) Myasthenia gravis and myasthenic syndromes. Ann Neurol 16:519–533PubMedCrossRefGoogle Scholar
  43. Engel WK, Gold GN, Karpati G (1968) Type I hypotrophy and central nuclei: a rare congenital muscle abnormality with a possible experimental model. Arch Neurol 18:435–444PubMedCrossRefGoogle Scholar
  44. Engel WK, Gomez MR, Groover RV (1971) Multicore disease: a recently recognised congenital myopathy associated with multifocal degeneration of muscle fibres. Mayo Clin Proc 46:666–681PubMedGoogle Scholar
  45. Esiri M (1987) Skeletal muscle and peripheral nerves. In: Keeling JW (ed.) Fetal and neonatal pathology. Springer-Verlag, Berlin, pp. 509–527Google Scholar
  46. Evans MI, Hoffman EP, Cadrin C et al. (1994) Fetal muscle biopsy: collaborative experience with varied indications. Obstet Gynecol 84:913–917PubMedGoogle Scholar
  47. Evans MI, Krivchenia EL, Johnson MP et al. (1995) In utero fetal muscle biopsy alters diagnosis and carrier risks in Duchenne and Becker muscular dystrophy. Fetal Diagn Ther 10:71–75PubMedCrossRefGoogle Scholar
  48. Fardeau M (1992) Congenital myopathies. In: Mastaglia FL, Walton J (eds) Skeletal muscle pathology, 2nd edn. Churchill Livingstone, London, pp. 237–281Google Scholar
  49. Farkas-Bargeton E, Aicardi J, Fardeau M, Arsenio-Nunes ML, Dreyfus P, Diebler MF (1974) Histochemical and ultrastructural study of muscle biopsies in 3 cases of dystrophia myotonica in the newborn child. J Neurol Sci 21:273–288CrossRefGoogle Scholar
  50. Farkas-Bargeton E, Diebler MF, Arsenio-Nunes ML, Wehrle R, Rosenberg B (1977) Etude de la maturation histochimique, quantitative et ultrastructurale du muscle foetal humain. J Neurol Sci 31:245–260PubMedCrossRefGoogle Scholar
  51. Farkas-Bargeton E, Aicardi J, Arsenio-Nunes ML, Wehrle R (1978) Delay in the maturation of muscle fibers in infants with congenital hypotonia. J Neurol Sci 39:17–29PubMedCrossRefGoogle Scholar
  52. Farkas-Bargeton E, Barbet JP, Dancea S, Wehrle R, Checouri A, Dulac O (1988) Immaturity of muscle fibers in the congenital form of myotonic dystrophy. Its consequences and its origin. J Neurol Sci 83:145–159PubMedCrossRefGoogle Scholar
  53. Fenichel GM (1966) A histochemical study of developing skeletal muscle. Neurology 16:741–745CrossRefGoogle Scholar
  54. Fenichel GM (1978) Clinical syndromes of myasthenia in infancy and childhood. A review. Arch Neurol 35:97–103PubMedCrossRefGoogle Scholar
  55. Ferreira O, Morvan J, Bernard AM, Verjut JP, Cleophax JP (1989) Maladie de Steinert néonatale. J Gynécol Obstet Biol Reprod 18:349–354Google Scholar
  56. Fitzsimons RB, Hoh JFY (1981) Embryonic and foetal myosins in human skeletal muscle. J Neurol Sci 52:367–384PubMedCrossRefGoogle Scholar
  57. Fu Y-H, Pizzuti A, Fenwick RG et al. (1992) An unstable triplet repeat in a gene related to myotonic dystrophy. Science 255:1256–1258PubMedCrossRefGoogle Scholar
  58. Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type — clinical, genetic and pathological considerations. Brain Dev 3:1–29PubMedCrossRefGoogle Scholar
  59. Gherardi R (1989) Pathologie neuro-musculaire. In: Poirier J, Gray F, Escourolle R (eds) Manuel de neuropathologie, 3rd edn. Masson, Paris, pp. 204–245Google Scholar
  60. Gilliam TC, Brzustowicz LM, Castilla LH et al. (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 28:823–825CrossRefGoogle Scholar
  61. Gruner JE, Bargeton E (1952) Lésions thalamiques dans la myatonie du nourrisson. Rev Neurol 86:236–242PubMedGoogle Scholar
  62. Hamilton WJ, Mossman HW (1972) Human embryology, 4th edn. McMillan, LondonGoogle Scholar
  63. Harley HG, Brook JD, Rundle SA et al. (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355:545–546PubMedCrossRefGoogle Scholar
  64. Harper PS (1989) Myotonic dystrophy, 2nd edn. Saunders, LondonGoogle Scholar
  65. Harper PS (1998) Myotonic dystrophy as a trinucleotide repeat disorder — a clinical perspective. In: Wells RD, Warren ST (eds) Genetic instabilities and hereditary neurological diseases. Academic Press, San Diego, pp. 115–130Google Scholar
  66. Harper PS, Dyken PR (1972) Early-onset dystrophia myotonica. Evidence supporting a maternal environmental factor. Lancet 2:53–57PubMedCrossRefGoogle Scholar
  67. Hauschka SD (1974) Clonal analysis of vertebrate myogenesis. IV. Developmental changes in the muscle colony-forming cells of the human fetal limb. Dev Biol 37:345–368PubMedCrossRefGoogle Scholar
  68. Heckmatt JZ, Sewry CA, Hodes D, Dubowitz V (1985) Congenital centronuclear (myotubular) myopathy. A clinical, pathological and genetic study in eight children. Brain 108:941–964PubMedCrossRefGoogle Scholar
  69. Helbling-Leclerc A, Topaloglu H, Tomé FMS et al. (1995) Readjusting the localization of merosin (laminin alpha2-chain) deficient congenital muscular dystrophy locus on chromosome 6q2. C R Acad Sci Paris 318:1245–1252PubMedGoogle Scholar
  70. Hillaire D, Leclerc A, Faure S et al. (1994) Localization of merosin-negative congenital muscular dystrophy to chromosome 6q2 by homozygosity mapping. Hum Mol Genet 3:1657–1661PubMedCrossRefGoogle Scholar
  71. Johnson MA (1990) Skeletal muscle. In: Filipe MI, Lake BD (eds.) Histochemistry in pathology, 2nd edn. Churchill Livingstone, Edinburgh, pp. 129–157Google Scholar
  72. Kobayashi K, Nakahori Y, Miyake M et al. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392PubMedCrossRefGoogle Scholar
  73. Korlin IS (1967) Nemaline myopathy. A fatal case. Am JDis Child 114:95–100Google Scholar
  74. Kumagai T, Hakamada S, Hara K et al. (1984) Development of human fetal muscles: a comparative histochemical analysis of the psoas and the quadriceps muscle. Neuropediatrics 15:198–202PubMedCrossRefGoogle Scholar
  75. Laing NJ, Majda BT, Akkari PA et al. (1992) Assignment of a gene (NEM1) for autosomal dominant nemaline myopathy to chromosome 1. Am J Hum Genet 50:576–583PubMedGoogle Scholar
  76. Laing NG, Wilton SD, Akkari PA et al. (1995) A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 9:75–79PubMedCrossRefGoogle Scholar
  77. Lake BD (1991) Skeletal musculature. In: Wigglesworth JS, Singer DB (eds) Textbook of fetal and perinatal pathology. Blackwell, Oxford, pp. 1221–1246Google Scholar
  78. Lake BD, Barbet JP (1998) Skeletal musculature. In: Wigglesworth JS, Singer DB (eds) Textbook of fetal and perinatal pathology, 2nd edn. Blackwell, Oxford, pp. 1083–1109Google Scholar
  79. Lammens M, Moerman P, Fryn SJP et al. (1997) Fetal akinesia sequence caused by nemaline myopathy. Neuropediatrics 28:116–119PubMedCrossRefGoogle Scholar
  80. Laporte J, Hu L-J, Kretz C et al. (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182PubMedCrossRefGoogle Scholar
  81. Laporte J, Guiraud-Chaumeil C, Vincent M-C et al. (1997) Mutations in the MTM1 gene implicated in X-linked myotubular myopathy. Hum Mol Genet 6:1505–1511PubMedCrossRefGoogle Scholar
  82. Lefebvre S, Burglen L, Reboullet S et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedCrossRefGoogle Scholar
  83. Lefebvre S, Burlet P, Liu Q et al. (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269PubMedCrossRefGoogle Scholar
  84. Lefebvre S, Burglen L, Frezal J, Munnich A, Melki J (1998) The role of the SMN gene in proximal spinal muscular atrophy. Hum Molec Genet 7:1531–1536PubMedCrossRefGoogle Scholar
  85. Lyon G (1969) Ultrastructural study of a nerve biopsy from a case of early infantile chronic neuropathy. Acta Neuropathol 13:131–142PubMedCrossRefGoogle Scholar
  86. Lyons GE, Haselgrove J, Kelly AM, Rubinstein NA (1983) Myosin transitions in developing fast and slow muscles in the rat hind limb. Differentiation 25:168–175PubMedCrossRefGoogle Scholar
  87. MacMenamin JB, Becker LE, Murphy EG (1982) Congenital muscular dystrophy: a clinicopathologic report of 24 cases. J Pediatr 100:692–697CrossRefGoogle Scholar
  88. Mahadevan M, Tsilfidis C, Sabourin L et al. (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science 255:1253–1255PubMedCrossRefGoogle Scholar
  89. Melki J, Sheth P, Abdelhak S et al. (1990) Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12–q14. Lancet 336:271–273PubMedCrossRefGoogle Scholar
  90. Melki J, Lefebvre S, Burglen L et al. (1994) De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 264:1474–1477PubMedCrossRefGoogle Scholar
  91. Miller JB (1991) Myoblasts, myosins, MyoDs, and the diversification of muscle fibers. Neuromusc Dis 1:7–17PubMedCrossRefGoogle Scholar
  92. Molenaar WM, Oosterhuis JW, Oosterhuis AM, Ramakaers FCS (1984) Mesenchymal and muscle-specific intermediate filaments (vimentin and desmin) in relation to differentiation in childhood rhabdomyosarcomas. Hum Pathol 16:838–843CrossRefGoogle Scholar
  93. Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activity of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136PubMedCrossRefGoogle Scholar
  94. Moore GE, Hurko O, Walsh FS (1984) Immunocytochemical analysis of fibre type differentiation in developing skeletal muscle. J Neuroimmunol 7:137–149PubMedCrossRefGoogle Scholar
  95. Mouly V, Lemonnier M, Libri D, Gros F, Fiszman MY (1990) Transformation and cloning of different types of myoblasts during avian development. In: Pette D (ed.) The dynamic state of muscle fiber. W Gruyter, Berlin, pp. 651–665Google Scholar
  96. Nonaka I, Koga Y, Okino E, Kikuchi A, Fujisawa K, Miyabayashi S (1988) Defects in muscle fiber growth in fatal infantile cytochrome c oxidase deficiency. Brain Dev 10:223–230PubMedCrossRefGoogle Scholar
  97. Olson EN, Klein WH (1994) bHLH factors in muscle development: deadlines and commitments, what to leave in and what to leave out. Genes Dev 8:1–8PubMedCrossRefGoogle Scholar
  98. Pelin K, Ridanpaa M, Donner K et al. (1997) Refined localisation of the genes for nebulin and titin on chromosome 2q allows the assignment of nebulin as a candidate gene for autosomal recessive nemaline myopathy. Eur J Hum Genet 5:229–234PubMedGoogle Scholar
  99. Periasamy M, Wieczorek DF, Nadal-Ginard B (1985) Characterization of a developmentally regulated perinatal myosin heavy chain expressed in skeletal muscle. J Biol Chem 259:13573–13578Google Scholar
  100. Philpot J, Sewry CA, Pennock J, Dubowitz V (1995) Clinical phenotype in congenital muscular dystrophy: correlation with expression of merosin in skeletal muscle. Neuromusc Disord 5:301–305PubMedCrossRefGoogle Scholar
  101. Poirier J, Gray F, Escourolle R (eds) (1990) Manuel de neuropathologie, 3rd edn. Masson, ParisGoogle Scholar
  102. Pons F, Léger JOC, Chevallay M, Tomé FMS, Fardeau M, Léger J-J (1986) Immunocytochemical analysis of myosin heavy chains in human fetal muscles. J Neurol Sci 76:151–163PubMedCrossRefGoogle Scholar
  103. Ringqvist M, Ringqvist I, Thornell L-E (1977) Differentiation of fibres in human masseter, temporal and biceps brachii muscles. J Neurol Sci 32:265–273PubMedCrossRefGoogle Scholar
  104. Roy N, Mahadevan MS, McLean M et al. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80:167–178PubMedCrossRefGoogle Scholar
  105. Sahgal VS, Bernes S, Sahgal S, Lischwey C, Subramani V (1983) Skeletal muscle in preterm infants with congenital myotonic dystrophy. Morphologic and histochemical study. J Neurol Sci 59:47–55PubMedCrossRefGoogle Scholar
  106. Santavuori P, Leisti J, Kruss S (1977) Muscle, eye and brain disease: a new syndrome. Neuropädiatrie 8:550–553Google Scholar
  107. Sarnat SB, Silbert SW (1976) Maturational arrest of fetal muscle in neonatal myotonic dystrophy. Arch Neurol 33:466–474PubMedCrossRefGoogle Scholar
  108. Sawchak JA, Benoff B, Sher JH, Shafiq SA (1990) Werdnig-Hoffmann disease: myosin isoform expression not arrested at prenatal stage of development. J Neurol Sci 95:183–192PubMedCrossRefGoogle Scholar
  109. Schmalbruch H, Kamieniecka Z, Arrøe M (1987) Early fatal nemaline myopathy: case report and review. Dev Med Child Neurol 29:800–804PubMedCrossRefGoogle Scholar
  110. Schochet SS (1986) Diagnostic pathology of skeletal muscle and nerve. Appleton, NorwalkGoogle Scholar
  111. Sewry CA (1985) Ultrastructural changes in diseased muscle. In: Dubowitz V (ed.) Muscle biopsy. A practical approach. Baillière Tindall, London, pp. 129–183Google Scholar
  112. Sewry CA (1989) Contribution of immunocytochemistry to the pathogenesis of spinal muscular atrophy. In: Merlini L, Granata C, Dubowitz V (eds) Current concepts in childhood spinal muscular atrophy. A Gaggi, Bologna, pp. 57–68Google Scholar
  113. Sewry CA, Chevallay M, Tomé FMS (1995) Expression of laminin subunits in human fetal skeletal muscle. Histochem J 27:497–504PubMedGoogle Scholar
  114. Sewry CA, Naom I, D’Alessandro M et al. (1997) Variable clinical phenotype in merosin-deficient congenital muscular dystrophy associated with differential immunolabelling of two fragments of the laminin α2 chain. Neuromusc Disord 7:169–175PubMedCrossRefGoogle Scholar
  115. Sher JH, Rimalovski AB, Athanassiades TJ, Aronson SM (1967) Familial centronuclear myopathy: a clinical and pathological study. Neurol 17:727–742CrossRefGoogle Scholar
  116. Shevell M, Rosenblatt B, Silver K, Carpenter S, Karpati G (1990) Congenital inflammatory myopathy. Neurology 40:1111–1117PubMedCrossRefGoogle Scholar
  117. Shinomura C, Nonaka I (1989) Nemaline myopathy: comparative muscle histochemistry in the severe neonatal, moderate congenital, and adult-onset forms. Pediatr Neurol 5:25–31CrossRefGoogle Scholar
  118. Shorer Z, Philpot J, Muntoni F, Sewry CA, Dubowitz V (1995) Peripheral nerve involvement in congenital muscular dystrophy. J Child Neurol 10:472–475PubMedCrossRefGoogle Scholar
  119. Shy GM, Magee KR (1956) A new congenital non-progressive myopathy. Brain 79:610–620PubMedCrossRefGoogle Scholar
  120. Shy GM, Engel WK, Somer SJE, Warko T (1963) Nemaline myopathy: a new congenital myopathy. Brain 86:793–810PubMedCrossRefGoogle Scholar
  121. Spiro AJ, Shy GM, Gonatas NK (1966) Myotubular myopathy: persistence of fetal muscle in an adolescent boy. Arch Neurol 14:1–14PubMedCrossRefGoogle Scholar
  122. Stockdale FE, Miller JB (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol 123:1–9PubMedCrossRefGoogle Scholar
  123. Tajbakhsh S, Borello U, Vivarelli E et al. (1998) Differential activation of Myf5 and MyoD by different Wnt s in expiants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162PubMedGoogle Scholar
  124. Takada K, Nakamura H, Tanaka J (1984) Cortical dysplasia in congenital muscular dystrophy with central nervous system involvement (Fukuyama type). J Neuropathol Exp Neurol 43:395–407PubMedCrossRefGoogle Scholar
  125. Tanabe Y, Nonaka I (1987) Congenital myotonic dystrophy. Changes in muscle pathology with ageing. J Neurol Sci 77:59–68PubMedCrossRefGoogle Scholar
  126. Taylor JE, Thomas NH, Lewis CM et al. (1998) Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy. Eur J Hum Genet 6:467–474PubMedCrossRefGoogle Scholar
  127. Thomas NST, Sarfarazi M, Roberts K et al. (1987) X-linked myotubular myopathy (MTM1): evidence for linkage to Xq28 DNA markers (abstr.) Cytogenet Cell Genet 46: 704Google Scholar
  128. Thompson CE (1982) Infantile myositis. Dev Med Child Neurol 24:307–313PubMedCrossRefGoogle Scholar
  129. Thornell L-E, Billeter R, Butler-Browne GS, Eriksson P-O, Ringqvist M, Whalen RG (1984) Development of fiber types in human fetal muscle. An immunocytochemical study. J Neurol Sci 66:107–115PubMedCrossRefGoogle Scholar
  130. Toda T, Segawa M, Nomura Y et al. (1993) Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31–33. Nat Genet 5:283–286PubMedCrossRefGoogle Scholar
  131. Tomé FMS, Evangelista T, Leclerc A et al. (1994) Congenital muscular dystrophy with merosin deficiency. C R Acad Sci Paris 317:351–357PubMedGoogle Scholar
  132. Vanier TM (1960) Dystrophia myotonica in childhood. Br Med J 11:1284–1288CrossRefGoogle Scholar
  133. Van Wijngaarden GK, Fleury P, Bethlem J, Meijer AEFH (1969) Familial ’myotubular’ myopathy. Neurol 19:901–908CrossRefGoogle Scholar
  134. Vivarelli E, Brown WE, Whalen RG, Cossu G (1988) The expression of slow myosin during mammalian somitogenesis and limb bud differentiation. J Cell Biol 107:2191–2197PubMedCrossRefGoogle Scholar
  135. Voit T (1998) Congenital muscular dystrophies: 1997 update. Brain Dev 20:65–74PubMedCrossRefGoogle Scholar
  136. Wada H, Nishio H, Kugo M et al. (1996) Severe neonatal nema-line myopathy with delayed maturation of muscle. Brain Dev 18:135–138PubMedCrossRefGoogle Scholar
  137. Wallgren-Pettersson C (1998) Genetics of the nemaline myopathies and the myotubular myopathies. Neuromusc Disord 8:401–404PubMedCrossRefGoogle Scholar
  138. Wallgren-Pettersson C, Avela K, Marchand S et al. (1995) A gene for autosomal recessive nemaline myopathy assigned to chromosome 2q by linkage analysis. Neuromusc Disord 5:441–443PubMedCrossRefGoogle Scholar
  139. Walton JN (1956) Amyotonia congenita: a follow-up study. Lancet 1:1023–1028CrossRefGoogle Scholar
  140. Wang J, Pegoraro E, Menegazzo E et al. (1995) Myotonic dystrophy: evidence for a possible dominant-negative RNA mutation. Hum Molec Genet 4:599–606PubMedCrossRefGoogle Scholar
  141. Waring JD, Korneluk RG (1998) Genetic studies of the myotonic dystrophy CTG. In: Wells RD, Warren ST (eds) Genetic instabilities and hereditary neurological diseases. Academic Press, San Diego, pp. 131–146Google Scholar
  142. Whalen RG, Sell SM, Butler-Browne GS, Schwartz K, Bouveret P, Pinset-Harmström I (1981) Three myosin heavy chains appear sequentially in rat muscle development. Nature 292:805–809PubMedCrossRefGoogle Scholar
  143. Whalen RG, Butler-Browne GS, Bugaiski LB, Harri SJB, Herlicoviez D (1985) Myosin isozyme expression in developing and regenerating rat muscle. In: Strohman RC, Wolf S (eds) Gene expression in muscle. Adv Exp Med Biol 182:193–199CrossRefGoogle Scholar
  144. Wijnaedndts LCD, van der Linden JC, van Unnik AJM et al. (1994) Expression of developmentally regulated muscle proteins in rhabdomyosarcomas. Am J Pathol 145:895–901Google Scholar
  145. Wohlfart G (1937) Über das Vorkommen verscheidener Arten von Muskelfasern in der Skelettmuskulatur der Menschen und einiger Säugetiere. Acta Psychiatr Neurol Scand 12 Suppl:l-119Google Scholar
  146. Worton R (1995) Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. Science 270:755–756PubMedCrossRefGoogle Scholar
  147. Yamaguchi M, Robson RM, Stromer MH, Dahl DS, Oda T (1978) Actin filaments form the backbone of nemaline myopathy rods. Nature 271:265–267PubMedCrossRefGoogle Scholar
  148. Zellweger H, Afifi A, McCormick WF, Mergner W (1967) Severe congenital muscular dystrophy. Am JDis Child 114:591–602Google Scholar
  149. Zhong N, Martiniuk F, Tzall S, Hirschhorn R (1991) Identification of a missense mutation in one allele of a patient with Pompe disease, and use of endonuclease digestion of PCR-ampli-fied RNA to demonstrate lack of mRNA expression from the second allele. Am J Hum Genet 49:635–645PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2001

Authors and Affiliations

  • J. Patrick Barbet

There are no affiliations available

Personalised recommendations