Skip to main content

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

In this chapter we develop the model which represents the cornerstone of extreme value theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Fisher, R. A., and Tippett, L. H. C. (1928). On the estimation of the frequency distributions of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society 24, 180–190.

    Article  MATH  Google Scholar 

  • Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York.

    MATH  Google Scholar 

  • Von Mises, R. (1954). La distribution de la plus grande de n valeurs. In Selected Papers, Volume II, pages 271–294. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological events. Quarterly Journal of the Royal Meteorological Society 81, 158–172.

    Article  Google Scholar 

  • Prescott, P. D Walden, A. T. (1983). Maximum likelihood estimation of the parameters of the three-parameter generalized extreme value distribution from censored samples. Journal of Statistical Computation and Simulation 16, 241–250.

    Article  MATH  Google Scholar 

  • Hosking, J. R. M. (1985). Maximum likelihood estimation of the parameters of the generalized extreme value distribution. Applied Statistics 34, 301–310.

    Article  Google Scholar 

  • Smith, R. L. (1985). Maximum likelihood estimation in a class of non-regular cases. Biometrika 72, 67–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Hosking, J. R. M. (1984). Testing whether the shape parameter is zero in the generalized extreme value distribution. Biometrika 71, 367–374.

    MathSciNet  Google Scholar 

  • Hall, P., and Tajvidi, N. (2000a). Distribution and dependence function estimation for bivariate extreme value distributions. Bernoulli 6, 835–844.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, J. P. (1988). Fitting extreme value distributions to maxima. Sankyha, Series A 50, 74–97.

    Google Scholar 

  • Smith, R. L. (1995). Likelihood and modified likelihood estimation for distributions with unknown endpoints. In Balakrishnan, N., editor, Recent Advances in Life-Testing and Reliabilty. A Volume in Honor of Alonzo Clifford Cohen, Jr., chapter 24, pages 455–474. Crc Press, Boca Raton.

    Google Scholar 

  • Buishand, T. A. (1989). Statistics of extremes in climatology.Statistica Neerlandica 43 1–30.

    Google Scholar 

  • Carter, D. J. T., and Challenor, P. G. (1981). Estimating return values of environmental parameters. Quarterly Journal of the Royal Meteorological Society 107, 259–266.

    Article  Google Scholar 

  • DE Haan, L. (1990). Fighting the arch-enemy with mathematics. Statistica Neerlandica 44, 45–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Dixon, M. J., and Tawn, J. A. (1999). The effect of non-stationarity on extreme sea-level estimation. Applied Statistics 48, 135–151.

    Article  MATH  Google Scholar 

  • Robinson, M. E., and Tawn, J. A. (1997). Statistics for extreme sea currents. Applied Statistics 46, 183–205.

    Article  MATH  Google Scholar 

  • Zwiers, F. W. (1987). An extreme value analysis of wind speeds at 5 Canadian locations. Journal of the Canadian Statistical Society 15, 317–327.

    Article  Google Scholar 

  • Walshaw, D. (2000). Modelling extreme wind speeds in regions prone to hurricanes. Applied Statistics 49, 51–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Henery, R. J. (1984). An extreme value model for predicting the results of horse races. Applied Statistics 33, 125–133.

    Article  Google Scholar 

  • Robinson, M. E., and Tawn, J. A. (1995). Statistics for exceptional athletics records. Applied Statistics 44, 499–511.

    Article  Google Scholar 

  • Scarf, P. A., and Laycock, P. J. (1996). Estimation of extremes in corrosion engineering. Journal of Applied Statistics 23, 621–643.

    Article  Google Scholar 

  • Smith, R. L. (1986). Extreme value theory based on the r largest annual events. Journal of Hydrology 86, 27–43.

    Article  Google Scholar 

  • Weissman, I. (1978). Estimation of parameters and quantiles based on the k largest observations. Journal of the American Statistical Association 73, 812–815.

    MathSciNet  MATH  Google Scholar 

  • Tawn, J. A. (1988b). An extreme value theory model for dependent observations. Journal of Hydrology 101, 227–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Coles, S. (2001). Classical Extreme Value Theory and Models. In: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer, London. https://doi.org/10.1007/978-1-4471-3675-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3675-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-874-4

  • Online ISBN: 978-1-4471-3675-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics