Skip to main content

Miscellaneous Electrical Materials

  • Chapter
Materials Handbook

Abstract

In 1821, Thomas Seebeck observed that if two different electrically conductive materials (i.e., metals, alloys, or semiconductors), made of two dissimilar materials, A and B, are joined together at both ends and the two junctions kept at two different temperatures (cold junction denoted T c and hot junction T h), this thermal differential induces an electric current to flow continuously through the circuit. In the open circuit, an electric potential difference, called Seebeck electromotive force (emf or e AB ) in honor of its discoverer, appears and this voltage is a complex function of the temperature difference and of material type (i.e., e AB ) = f(ΔT, A, B)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gopa R, Gibbons DW (1994) J Electrochem Soc 14: 2918.

    Article  Google Scholar 

  2. Pletcher D, Walsh FC (1990) Industrial electrochemistry, 2nd edn. Chapman and Hall, London.

    Google Scholar 

  3. Kuhn AT (ed.) (1977) Electrochemistry of lead. Academic Press, London.

    Google Scholar 

  4. Gonzalez-Dominguez JA, Peters E, Dreisinger DB (1991) J Appl Electrochem 21: 189.

    Article  CAS  Google Scholar 

  5. Baizer MM, Lund H (1983) Organic electrochemistry: an introduction and a guide, 2nd edn. Marcel Dekker, New York.

    Google Scholar 

  6. Karavasteva M, Karaivanov S (1993) J Appl Electrochem 23: 763.

    Article  CAS  Google Scholar 

  7. Thompson J, Genders D (1992) US Pat 5, 098, 532.

    Google Scholar 

  8. Pletcher D, Genders D, Weinberg N, Spiege E (1993) US Pat 5, 246, 551.

    Google Scholar 

  9. Schneider L (1995) US Pat 5, 478, 448.

    Google Scholar 

  10. Genders D, Weinberg N (eds) (1992) Electrochemistry for a cleaner environment. The Electrosynthesis Co., Lancaster, NY.

    Google Scholar 

  11. Wendt S (1998) Electrochemical engineering. Springer-Verlag, Heidelberg.

    Google Scholar 

  12. Pickett DJ (1979) Electrochemical reactor design. Elsevier, Amsterdam.

    Google Scholar 

  13. Rousar I, Micka K, Kimla A (1985) Electrochemical engineering, vols 1 and 2. Elsevier, Amsterdam.

    Google Scholar 

  14. Hine F (1985) Electrode processes and electrochemical engineering. Plenum Press, New York.

    Book  Google Scholar 

  15. Couper AM, Pletcher D, Walsh FC (1990) Chem Rev 90: 937.

    Article  Google Scholar 

  16. Trasatti S (1994) In Lipkowski J, Ross PN (eds) The electrochemistry of novel materials. VCH, New York, Chap. 5, pp 207–295.

    Google Scholar 

  17. La Conti AB, Fragala AR, Boyack JR (1977) ECS meeting, Philadelphia, May.

    Google Scholar 

  18. Bishop CR, Stern M (1961) Hydrogen embrittlement of tantalum in aqueous media. Corrosion 17: 379t - 385t.

    Article  CAS  Google Scholar 

  19. Howe (ed.) (1949) Bibliography of the platinum metals. Baker & Co., Newark.

    Google Scholar 

  20. Dreyman EW (1972) Mater Prot Perform 11: 17.

    CAS  Google Scholar 

  21. Cailleret L, Collardeau E (1894) CR Acad Sci 830.

    Google Scholar 

  22. Stevens RH (1913) US Pat 1,077,827, 1,077,894 and 1, 077, 920.

    Google Scholar 

  23. Bode H (1977) Lead-acid batteries. John Wiley, New York.

    Google Scholar 

  24. Greenwood NN, Earnshaw N (1984) Chemistry of the elements. Pergamon Press, Oxford, Chap. 10, p 435.

    Google Scholar 

  25. De Nora O (1962) Brit Pat 902,023 (1962).

    Google Scholar 

  26. Hoffmann W (1960) Lead and lead alloys. Springer-Verlag, Berlin.

    Google Scholar 

  27. Mao GW, Larson J, Rao GP (1969) J Inst Metal 97: 343.

    CAS  Google Scholar 

  28. Beck F (1972) Electrochim Acta 17: 2317.

    Article  CAS  Google Scholar 

  29. Isfort H (1985) DECHEMA 98 144.

    Google Scholar 

  30. Gardiner WC (1947) Chem Eng 28 January: 100.

    Google Scholar 

  31. Holemann H (1962) Chem Ing Techn 34: 371.

    Article  Google Scholar 

  32. De Nora O (1960) Chem Eng 25 July.

    Google Scholar 

  33. Messner G (1966) US Pat 3, 236, 760.

    Google Scholar 

  34. Grosselfinger FB (1964) Chemical Eng 71: 172.

    CAS  Google Scholar 

  35. Donges E, Janson HG (1966) Chem Ing Techn 38: 443.

    Article  Google Scholar 

  36. Kroll WJ (1940) Trans Electrochem Soc 78: 35.

    Article  Google Scholar 

  37. Rhoda RN (1952) Trans Inst Met Finish 36: 82.

    Google Scholar 

  38. Rosenblatt EF, Cohn JF (1955) US Patent 2, 719, 797.

    Google Scholar 

  39. Cotton JB (1958) Chem Ind 3: 492.

    Google Scholar 

  40. Cotton JB (1958) Chem Ind 3: 640.

    Google Scholar 

  41. Beer HB (1958) Brit Pat 855, 107.

    Google Scholar 

  42. Cotton JB (1958) Brit Pat 877, 901.

    Google Scholar 

  43. Cotton JB (1958) Platinum Met Rev 2: 45.

    CAS  Google Scholar 

  44. Balko EN (1991) Electrochemical applications of the platinum group: metal coated anodes. In Hartley FR (ed.) Chemistry of the platinum group metals: recent developments, chap. 10. Elsevier, New York.

    Google Scholar 

  45. Muller P, Spiedel H (1960) Metall 14: 695.

    CAS  Google Scholar 

  46. Schleicher HW (1963) Brit Pat 941, 177.

    Google Scholar 

  47. Whiting KA (1964) US Pat 3, 156, 976.

    Google Scholar 

  48. Haley AJ, Keith CD, May JE (1969) US Pat 3, 461, 058.

    Google Scholar 

  49. May JE, Haley AJ (1970) US Pat 3, 505, 178.

    Google Scholar 

  50. Cotton JB, Hayfield PCS (1965) Brit Pat 1, 113, 421.

    Google Scholar 

  51. Lowenheim FA (1965) Modern Electroplating, 3rd edn. Wiley, New York.

    Google Scholar 

  52. Hayfield PCS, Jacob WR (1980) In: Coulter MO (ed.) Modern chlor-alkali technology. Ellis Horwood, London, chap. 9, pp 103–120.

    Google Scholar 

  53. Cotton JB, Williams EC, Barber, AH (1958) Brit Pat 877, 901.

    Google Scholar 

  54. Anderson EP (1961) US Pat 2, 998, 359.

    Google Scholar 

  55. Adamson AF, Lever BG, Stones WF (1963) J Appl Chem 13, 483.

    Article  CAS  Google Scholar 

  56. Ibl N, Kramer R, Ponto L, Robertson PM (1979) AIChE Symp Ser 75: 45.

    CAS  Google Scholar 

  57. Rakov AA, Veselovskii VI, Kasatkin EV, Potapova GF, Sviridon VV (1977) Zh Prikl Khim 50: 334.

    CAS  Google Scholar 

  58. Angell CH, Deriaz MG (1960) Brit Pat 885, 819.

    Google Scholar 

  59. Angell CH, Deriaz MG (1963) Brit Pat 984, 973.

    Google Scholar 

  60. Taylor JF (1929) J Opt Soc Amer 18: 138.

    Article  CAS  Google Scholar 

  61. Hopper RT (1923) Ceram Indust June.

    Google Scholar 

  62. Kuo CY (1974) Solid State Technol 17: 49.

    CAS  Google Scholar 

  63. Anderson EP (1961) US Pat 2, 998, 359.

    Google Scholar 

  64. Tirrel CE (1964) US Pat 3, 117, 023.

    Google Scholar 

  65. Bianchi G, Gallone P, Nidola AE (1970) US Pat 3, 491, 014.

    Google Scholar 

  66. Millington JP (1974) Brit Pat 1, 373, 611.

    Google Scholar 

  67. Haley AJ (1967) Engelhardt Indust Techn Bull 7: 157.

    Google Scholar 

  68. Beer HB (1963) US Pat 3, 096, 272.

    Google Scholar 

  69. Bianchi G, De Nora V, Gallone P, Nidola A (1971) US Pat 3, 616, 445.

    Google Scholar 

  70. Bianchi G, De Nora V, Gallone P, Nidola A (1976) US Pat 3, 948, 751.

    Google Scholar 

  71. Trasatti S, O’Grady WE (1981). In: Gerisher H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol. 12. Wiley Interscience, New York, pp 177–261.

    Google Scholar 

  72. Beer HB (1966) Z Afrik Pat ZA 662, 667.

    Google Scholar 

  73. Beer HB (1968) Z Afrik Pat ZA 680, 034.

    Google Scholar 

  74. Beer HB (1966) US Pat 3, 214, 110.

    Google Scholar 

  75. Beer HB (1972) US Pat 3, 632, 498.

    Google Scholar 

  76. Beer HB (1973) US Pat 3, 711, 385.

    Google Scholar 

  77. Beer HB (1973) US Pat 3, 751, 291.

    Google Scholar 

  78. Nidola A (1981) In Trasatti S (ed.) Electrodes of conductive metallic oxides, Part B. Elsevier, Amsterdam, chap. 11, pp 627–659.

    Google Scholar 

  79. Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21: 335.

    Article  CAS  Google Scholar 

  80. Gorodtskii VV, Tomashpol’skii Yu Ya, Gorbacheva LB et aI. (1984) Elektrokhimiya 20: 1045.

    Google Scholar 

  81. Beer HB (1980) J Electrochem Soc 127: 303C.

    Article  CAS  Google Scholar 

  82. Miles MH, Thomason J (1976) J Electrochem Soc 123: 1459.

    Article  CAS  Google Scholar 

  83. Jasinski R, Brilmyer, G, Helland L (1983) J Electrochem Soc 130: 1634.

    Article  CAS  Google Scholar 

  84. Pohl JP, Richert H (1980) In: Trasatti S (ed.) Electrodes of conductive metallic oxides, part A. Elsevier, Amsterdam, chap. 4, pp 183–220.

    Google Scholar 

  85. Thangappan R, Nachippan S, Sampathi S (1970) Ind Eng Chem Prod Res Dev 9: 563.

    Article  CAS  Google Scholar 

  86. De Nora O (1962) Brit Pat 902, 023.

    Google Scholar 

  87. Clarke JS, Ehigamusoe RE, Kuhn AT (1976). J Electroanal Chem 70: 333.

    Article  CAS  Google Scholar 

  88. Grigger JC, Miller HC, Loomis FD (1958) J Electrochem Soc 105: 100.

    Article  CAS  Google Scholar 

  89. Engelhardt V, Huth M (1909) US Pat 935, 250.

    Google Scholar 

  90. Gaunce FS (1964) Fr Pat 1, 419, 356.

    Google Scholar 

  91. Higley LW, Dressel WM, Cole ER (1976) US Bureau of Mines, Report No. 8111.

    Google Scholar 

  92. Goodridge F, Lister K, Plimley R et al. (1980) J Appt Electrochem 10: 55.

    Article  CAS  Google Scholar 

  93. Bennett JE, O’Leary KJ (1973) US Pat 3, 775, 284.

    Google Scholar 

  94. Huth M (1919) US Pat 3, 616, 302.

    Google Scholar 

  95. Feige NG (1974) US Pat 3, 855, 084.

    Google Scholar 

  96. De Nora O, Nidola O, Spaziante PM (1978) US Pat 4, 072, 586.

    Google Scholar 

  97. Hayes M, Kuhn AT (1978) J Appl Electrochem 8: 327.

    Article  CAS  Google Scholar 

  98. Kuhn AT, Wright PM (1971) In: Kuhn AT (ed.) Industrial electrochemical processes, chap. 14. Elsevier, New York.

    Google Scholar 

  99. Itai R, Shibuya M, Matsumura T, Ishi G (1968) Electrochem Technol 6: 402.

    Google Scholar 

  100. Itai R, Shibuya M, Matsumura T, Ishi G (1971) J Electrochem Soc 118: 1709.

    Article  CAS  Google Scholar 

  101. Clarke R, Pardoe R (1992) Applications of Ebonex conductive ceramics in effluent treatment. In: Genders D, Weinberg N (eds) Electrochemistry for a cleaner environment. Electrosynthesis, New York, pp 349–363.

    Google Scholar 

  102. Manoharan R, Goodenough JB (1991) Electrochim Acta 36: 19.

    Article  CAS  Google Scholar 

  103. Yeo RS, Orehotsky J, Visscher W, Srinivasan S (1981) J Electrochem Soc 128: 1900.

    Article  CAS  Google Scholar 

  104. De Nora O, Bianchi G, Nidola A, Trisoglio G (1975) US Pat 3, 878, 083.

    Google Scholar 

  105. Comninellis Ch, Vercesi GP (1991). J Appl Electrochem 21: 335.

    Article  CAS  Google Scholar 

  106. Kuznetzova EG, Borisova TI, Veselovskii VI (1968). Elektrokhimiya 10: 167.

    Google Scholar 

  107. Warren HI, Wemsley D, Seto K (1975) Inst mining met branch meeting, 11 February, 53.

    Google Scholar 

  108. Seko K (1976) Am Chem Soc Centennial Meeting, New York.

    Google Scholar 

  109. Antler M, Butler CA (1967) J Electrochem Technol 5: 126.

    CAS  Google Scholar 

  110. Hine F, Yasuda M, Yoshida T, Okuda J (1978) ECS Meeting, Seattle, 15 May, Abstract 447.

    Google Scholar 

  111. Colo ZJ, Hardee KL, Carlson RC (1992) US Pat 5, 141, 563.

    Google Scholar 

  112. Fukuda K, Iwakura C, Tamura H (1980) Electrochim Acta 25: 1523.

    Article  CAS  Google Scholar 

  113. Savall A (1992) In: Électrochimie 92, L’Actualité Chimique, special issue, Janvier.

    Google Scholar 

  114. Potgieter JH, Heyns AM, Skinner W (1990) J Appl Electrochem 20: 711.

    Article  CAS  Google Scholar 

  115. Cardarelli F, Comninellis Ch, Savall A, Taxil P, Manoli G, Leclerc 0 (1998) J Appl Electrochem 28: 245.

    Article  CAS  Google Scholar 

  116. Vercesi GP, J, Rolewicz J, Comninellis Ch (1991) Thermochim Acta 176: 31.

    Article  CAS  Google Scholar 

  117. Farbenfabriken Bayer Aktiengesellschaft (1968) Fr Pat 1, 516, 524.

    Google Scholar 

  118. Jeffes JHE (1974) Brit Pat 1, 355, 797.

    Google Scholar 

  119. Denton DA, Hayfield PCS (1990) Eur Pat AO 383, 412.

    Google Scholar 

  120. Kumagai N, Jikihara S, Samata Y, Asami K, Hashimoto AM (1993) Proc Hawaii meet ISE, Honolulu, Hawaii, pp 16–21.

    Google Scholar 

  121. Cardarelli F, Taxil P, Savall A (1996) Int J Refract Metals Hard Mater 14: 365.

    Article  CAS  Google Scholar 

  122. Cardarelli F, Comninellis Ch, Leclerc 0, Saval A, Taxil P, Manoli G (1996) WO 9743465 Al, FR 96–5916, 28 May.

    Google Scholar 

  123. Riggs OL Jr, Locke CE (1981) Anodic protection: theory and practice in the prevention of corrosion. Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Cardarelli, F. (2000). Miscellaneous Electrical Materials. In: Materials Handbook. Springer, London. https://doi.org/10.1007/978-1-4471-3648-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3648-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3650-7

  • Online ISBN: 978-1-4471-3648-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics