Advertisement

Multivariable Systems

  • Cheng-Ching Yu
Part of the Advances in Industrial Control book series (AIC)

Abstract

Up to this point, discussions on autotuners are mostly limited to singleinput-single-output (SISO) systems. Koivo and co-workers (Penttiner and Koivo, 1980; Koivo and Pohjolainer, 1985) use step responses to find the state space model for a n × n multivariable system. PI controllers are designed according to the linear model. Conceptually, this is similar to a multivariable version of the process reaction curve method (Seborg et al., 1989, p.302). Since step responses are employed in the identification phase, the method may encounter difficulties with highly nonlinear processes. Cao and McAvoy (1990) evaluate and analyze the performance of the pattern recognition controller (EXACT, Bristol, 1977) in a multivariable system. Hsu et al. (1992) attempt to extend the Åström-Hägglund autotuner to multivariable systems when I-only (integral only) controllers are used. Furthermore, the method of Hsu et al. (1992) requires that the steady-state gain matrix should be known a priori. Obviously, this requirement limits the applicability of the autotuner in an operating environment.

Keywords

Distillation Column Multivariable System Load Response Transfer Function Matrix Tuning Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Åström, K. J.; Hägglund, T. “Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins,” Automatic 1984, 20, 645.zbMATHCrossRefGoogle Scholar
  2. [2]
    Åström, K. J.; Hang, C. C.; Persson, P.; Ho, W. K. “Towards Intelligent PID Control,” Automatica 1992, 28, 1.Google Scholar
  3. [3]
    Bhalodia, M.; Weber, T. W. “ Feedback Control of a Two-Input, Two-Output Interacting Process,” Ind. Eng. Chem. Process Des. Dev. 1979, 18, 599.Google Scholar
  4. [4]
    Bernstein, D. S. “Sequential Design of Decentralized Dynamic Compensators Using the Optimal Projection Equations,” Int. J. Control 1987, 46, 1569.Google Scholar
  5. [5]
    Bristol, E. H. “Pattern Recognition: An Alternative to Parameter Adaptive PID Controller,” Automatica 1977, 13, 197.Google Scholar
  6. [6]
    Bristol, E. H. “New Measure of Interaction for Multivariable Process Control,” IEEE Trans. Automat. Control1966, AC-11,133.Google Scholar
  7. [7]
    Cao, R.; McAvoy, T. J. “Evaluation of Pattern Recognition Adaptive PID Controller,” Automatica 1990, 26, 797.Google Scholar
  8. [8]
    Chang, D. M.; Yu, C. C. “The Distillate-Bottoms Control of Distillation Columns: Modeling, Tuning and Robustness Issues,” J. Chin. Inst. Chem. Eng. 1992, 23, 344.Google Scholar
  9. [9]
    Chiang, T. P.; Luyben, W. L. “Comparison of the Dynamic Performances of Three Heat-Integrated Distillation Configurations,” Ind. Eng. Chem. Res. 1988, 27, 99.Google Scholar
  10. [10]
    Chiu, M. S.; Arkun, Y. “A Methodology for Sequential Design of Robust Decentralized Control Systems,” Automatica 1992, 28, 997.Google Scholar
  11. [11]
    Fuentes, C.; Luyben, W. L. “Control of High-Purity Distillation Columns,” Ind. Eng. Chem. Process Des. Dev. 1983, 22, 361.Google Scholar
  12. [12]
    Häggblom, K. E.; Waller, K. V. “Transformations and Consistency Relations of Distillation Control Structures,” AIChE J. 1988, 34, 1634.Google Scholar
  13. [13]
    Häggblom, K. E.; Waller, K. V. “Control Structure, Consistency, and Transformations,” Practical Distillation Control, Luyben, W. L., Ed.; Van Nostrand Reinhold: New York 1992.Google Scholar
  14. [14]
    Hsu, L.; Chan, M.; Bhaya, A. “Automated Synthesis of Decentralized Tuning Regulators for Systems with Measurable DC Gain,” Automatica 1992, 28, 185.Google Scholar
  15. [15]
    Grosdidier, P.; Morari, M.; Holt, R. B. “Closed-Loop Properties from Steady-State Gain Information,” Ind. Eng. Chem. Process Des. Dev. 1985, 24, 221.Google Scholar
  16. [16]
    Koivo, H. N.; Pohjolainen, S. “Tuning of Multivariable PI Controller for Unknown Systems with Input Delay,” Automatica 1985, 21, 81.Google Scholar
  17. [17]
    Leithead, W. E.; O’Reilly, J. “Performance Issues in the Individual Channel Design of 2-input 2-output Systems. Part 1. Structural Issues,” Int. J. Control 1991, 54, 47.Google Scholar
  18. [18]
    Luyben, W. L. “Simple Method for Tuning SISO Controllers in Multivariable Systems,” Ind. Eng. Chem. Process Des. Dev. 1986, 25, 654.Google Scholar
  19. [19]
    Luyben, W. L. “Sensitivity of Distillation Relative Gain Arrays to Steady-State Gains,” Ind. Eng. Chem. Res. 1987a, 26, 2076.Google Scholar
  20. [20]
    Luyben, W. L. “Derivation of Transfer Functions for Highly Nonlinear Distillation Columns,” Ind. Eng. Chem. Res. 1987b, 26, 2490.Google Scholar
  21. [21]
    Luyben, W. L. Process Modeling, Simulation and Control for Chemical Engineers; 2nd ed., McGraw-Hill: New York, 1990.Google Scholar
  22. [22]
    Marino-Galarraga, M.; McAvoy, T. J.; Marlin, T. E. “Short-Cut Operability Analysis. 2. Estimation of f t Detuning Parameter for Classical Control Systems,” Ind. Eng. Chem. Res. 1987, 26, 511.Google Scholar
  23. [23]
    Mayne, D. Q. “The Design of Linear Multivariable Systems,” Automatica 1973, 9, 201.Google Scholar
  24. [24]
    Mayne, D. Q. “Sequential Design of Linear Multivariable Systems,” Proc. IEE Part D, 1979, 126, 568.Google Scholar
  25. [25]
    Ogunnaike, B. A.; Ray, W. H. “Multivariable Controller Design for Linear Systems Having Multiple Time Delays,” AIChE J. 1979, 25, 1043.Google Scholar
  26. [26]
    O’Reilly, J.; Leithead, W. E. “Multivariable Control by Individual Channel Design,” Int. J. Control 1991 54, 1.Google Scholar
  27. [27]
    Papastathopoulou, H. S.; Luyben, W. L. “Tuning Controllers on Distillation Columns with the Distillate-Bottoms Structure,” Ind. Eng. Chem. Res. 1990, 29, 1859.Google Scholar
  28. [28]
    Penttinen, J.; Koivo, H. N. “Multivariable Tuning Regulators for Unknown Systems,” Automatica 1980, 16, 393.Google Scholar
  29. [29]
    Rice, J. R. Numerical Methods, Software, and Analysis; McGraw-Hill: New York, 1983.Google Scholar
  30. [30]
    Schei, T. S. “A Method for Closed Loop Automatic Tuning of PID Controllers,” Automatica 1992, 28, 587.Google Scholar
  31. [31]
    Seborg, D. E.; Edgar, T. F.; Mellichamp, D. A. Process Dynamics and Control; Wiley: New York, 1989.Google Scholar
  32. [32]
    Shen, S. H.; Yu, C. C. “Indirect Feedforward Control: Multivariable Systems,” Chem. Eng. Sci. 1992, 47, 3085.Google Scholar
  33. [33]
    Shen, S. H.; Yu, C. C. “Use of Relay Feedback Test for Automatic Tuning of Multivariable Systems,” AIChE J. 1994, 40, 627.Google Scholar
  34. [34]
    Tan, L. Y.; Weber, T. W. “Controller Tuning of a Third-Order Process under Proportional-Integral Control,” Ind. Eng. Chem. Process Des. Dey. 1985, 24, 1155.Google Scholar
  35. [35]
    Skogestad, S.; Landström, P. “µ-Optimal LV-Control of Distillation Columns,” Comput. Chem. Eng. 1990, 14, 401.Google Scholar
  36. [36]
    Wood, R. K.; Berry, M. W. “Terminal Composition Control of a Binary Distillation Column,” Chem. Eng. Sci. 1973, 28, 1707.Google Scholar
  37. [37]
    Yu, C. C.; Fan, M. K. H. “Decentralized Integral Controllability and D-stability,” Chem. Eng. Sci. 1990, 45, 3299.CrossRefGoogle Scholar
  38. [38]
    Ziegler, J. G.; Nichols, N. B. “Optimum Settings for Automatic Controllers,” Trans. ASME 1942, 12, 759.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Cheng-Ching Yu
    • 1
  1. 1.Department of Chemical EngineeringNational Taiwan University of Science & TechnologyTaipeiTaiwan

Personalised recommendations