Advertisement

Introduction

  • Cheng-Ching Yu
Part of the Advances in Industrial Control book series (AIC)

Abstract

Despite rapid evolution in control hardware over past 50 years, the PID controller remains the workhorse in process industries. The proportional action (P mode) adjusts controller output according to the size of the error. The integral action (I mode) can eliminate the steady-state offset and the future trend is anticipated via the derivative action (D mode). These useful functions are sufficient for a large number of process applications and the transparency of the features leads to wide acceptance by the users. On the other hand, it can be shown that the internal model control (IMC) framework leads to PID controllers for virtually all models common in industrial practice (Morari and Zafiriou, 1989). Note that this includes systems with inverse responses and integrating (unstable) processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Åström, K. J.; Hägglund, T. “Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins,” Automatica 1984, 20, 645.zbMATHCrossRefGoogle Scholar
  2. [2]
    Åström, K. J.; Hägglund, T. PID Controllers: Theory, Design, and Tuning; Instrument Society of America: Research Triangle Park, 1995.Google Scholar
  3. [3]
    Bialkowski, W. L. “Dream vs Reality: A View from Both Sides of the Gap,” Pulp Paper Can. 1993, 9.4,19.Google Scholar
  4. [4]
    Bristol, E. H. “Pattern Recognition: An Alternative to Parameter Adaptive PID Controller,” Automatica 1977, 13, 197.zbMATHCrossRefGoogle Scholar
  5. [5]
    Cao, R.; McAvoy, T. J. “Evaluation of Pattern Recognition Adaptive PID Controller,” Automatica 1990, 26, 797.Google Scholar
  6. [6]
    Ender, D. B. “Process Control Performance: Not as Good as You Think,” Control Eng. 1993,. 40, 180.Google Scholar
  7. [7]
    Hang, C. C.; Lee, T. H.; Ho, T. H. Adaptive Control; Instrument Society of America: Research Triangle Park, 1993.Google Scholar
  8. [8]
    Hersh, M. A.; Johnson, M. A. “A Study of Advanced Control Systems in the Workplace,” Control Eng. Prac. 1997, 5, 771.CrossRefGoogle Scholar
  9. [9]
    Luyben, W. L. “Derivation of Transfer Functions for Highly Nonlinear Distillation Columns,” Ind. Eng. Chem. Res. 1987, 26, 2490.CrossRefGoogle Scholar
  10. [10]
    Luyben, W. L.; Luyben, M. L. Essentials of Process Control; McGraw-Hill: New York, 1997.Google Scholar
  11. [11]
    Luyben, W. L.; Tyreus, B. D.; Luyben, M. L. Plantwide Control; McGraw-Hill: New York, 1998.Google Scholar
  12. [12]
    McMillan, G. K. Tuning and Control Loop Performance; Instrument Society of America: Research Triangle Park, 1994.Google Scholar
  13. [13]
    Morari, M.; Zafiriou, E. Robust Process Control; Prentice Hall: Englewood Cliff, 1989.Google Scholar
  14. [14]
    Seborg, D. E.; Edgar, T. F.; Mellichamp, D. A. Process Dynamics and Control; John Wiley & Sons: New York, 1989.Google Scholar
  15. [15]
    Yuwana, M.; Seborg, D. E. “A New Method for On-Line Controller Tuning,” AIChE J. 1982, 28, 434.Google Scholar
  16. [16]
    Ziegler, J. G.; Nichols, N. B. “Optimum Settings for Automatic Controllers,” Trans. ASME 1942, 12, 759.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Cheng-Ching Yu
    • 1
  1. 1.Department of Chemical EngineeringNational Taiwan University of Science & TechnologyTaipeiTaiwan

Personalised recommendations