Skip to main content

Laser Automation and In-Process Sensing

  • Chapter
Laser Material Processing

Abstract

The recent developments in industry, particularly through the activities of the Ford Motor Co., where the word “automation” was first used in the 1940s, have sketched a progression through “mechanisation” — the use of machines which enhanced speed, force or reach, but where the control was human; to “automatic” machinery — in which the machine will go through its programmed movements without human intervention and the machine is self regulating; until today we have “automation” — in which there is usually a sequence of machines all controlling themselves under some overall control. In the future there is the prospect of “adaptive control” or “intelligent” machines — in which the machine can be set a task and it teaches itself to do the task better and better according to some preset criteria. The drive towards automation is powered by the possibility of cost reductions, increased productivity, increased accuracy, saving of labour, greater production reliability, longer production hours, better working conditions for the human staff, increased flexibility of production to meet the needs of changing markets and improved quality. This list is a formidable argument for automation but it is only justified for certain production volumes. Fig. 8.1 gives an idea of the stages which are most economical in setting up an automatic production facility. If very few pieces are needed then it is cheapest to make them by hand. If a very large number of pieces are needed then it is cheapest to make them on a purpose built production line — “hard automation”. In between there is the relatively new area of flexible manufacturing, possibly using robots and linked machines. This middle zone in production size is growing due to the manufacturing market becoming more fashion conscious and pandering to the human appetite for novelty and change.

Everything must be like something, so what is this like?

E.M.Forster 1879–1970 Abinger Harvest (1936).

To govern is to make choices

Duc de Levis 1764–1830 Politique “Maximes de Politique”xix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Craig.J.J. “Adaptive control of mechanical manipulators” publ Adison Wesley 1988 Mass USA.

    Google Scholar 

  2. Lim.G.C., Steen.W.M. “The Measurement of the Temporal and Spatial Power Distribution of a High Powered CO2 Laser Beam” Optics and Laser Technology June 1982 pp 149–153.

    Google Scholar 

  3. Spalding.I.J. “High Power Laser Beam Diagnostics pt.I” Proc 6th Int Gas Flow and Chemical Laser Conf. (GLC6), Jerusalem, Israel Sept 1986 publ Springer-Verlag pp314–322.

    Google Scholar 

  4. Sepold.G., Juptner.G., Rothe.R “Remarks on Deep Penetration Cutting with a CO2 Laser” Paper A-29 Proc Intl Conf. on Weld. Res. 1980 Osaka, Japan JWRI pubi.

    Google Scholar 

  5. Oaldey.P.J. “Measurement of Laser Beam Parameters” I1W DOC IV-350–83 1983.

    Google Scholar 

  6. Rasmussen.A.L. “Double Plate Calorimeter for Measuring the Reflectivity of the Plates and Energy in Beam of Radiation” US Patent 3,622, 245 Dec 1971.

    Google Scholar 

  7. Mansell.D.N. “Laser Beam Scanning Device” US Patent 3,738,168 June 12 1973.

    Google Scholar 

  8. Davis.J.M. Peter.P.H. “Calorimeter with a Highly Reflective Surfacefor measuring Intense Thermal Radiation” Appl. Opt. Vol 10 No. 8 Aug 1971.

    Google Scholar 

  9. Toshharu Shirakura et al “Methods and Apparatus for Measuring Laser Beam” US Patent 4,474,468 Oct 2 1984.

    Google Scholar 

  10. GibsonA.F., Kimitt.M.F., Walker.A.C. Appl. Phys. Lett. 17 1970.

    Google Scholar 

  11. Satheesshkumar.M.K., Vallabhan.C.P.G. “Use of a Phot-Acoustic Cell as a Scientific Laser Power Meter” J. Phys E Sci Instr. Vol 18 1985 pp 435–436.

    Article  Google Scholar 

  12. Uhich.P.B. “Power Meter for high Energy Lasers” US Patent 4,381,148 April 26 1983.

    Google Scholar 

  13. Miller.T.G. “Power Measuring Device for Pulsed Lasers” US Patent 4,325,252, April 20 1982.

    Google Scholar 

  14. Shifrin.GA “Absorption Radiometer” US Patent 3,487,685 Jan 6 1970.

    Google Scholar 

  15. Crow.T.G. “Laser Energy Monitor” US Patent 4,424,581 Dec 30 1980.

    Google Scholar 

  16. Steen.W.M., Weerasinghe.V.M. “Monitoring of Laser Material Processing” Proc SPIE conf. paper 650 22 Innsbruck April 1986 pubi by SPIE PO Box 10 Bellingham, Washington USA proc vol 650 pp 160–166.

    Google Scholar 

  17. Lim.G.C., Steen.W.M. “Instrument for the Instantaneous in situ Analysis of the Mode Structure of a High Power Laser Beam” J. Phys.E. Sci.Instr. (1984) vol 17 pp 999–1007.

    Article  Google Scholar 

  18. Willmott.N.F.F., Hibberd.R, Steen.W.M., “Keyhole/Plasma Sens ing System for Laser-Welding Control System” Proc Int Conf on Applications of Lasers and Electro Optics ICALEO ‘88 Santa Clara Calif USA Oct/Nov 1988 pubi Laser Material Processing Springer-Verlag IFS pubi. with LIA pp 109–118.

    Google Scholar 

  19. Tashiro H., Suetsugu Y. “Localisation of incident laser beam in the optical element by on-site photoacoustic detection” J.Appl.Phys. 69 (9) May 1991 pp 6741–6743.

    Article  Google Scholar 

  20. Postacioglu.N., Kapadia.P, Dowden.J., “Capillary Waves on the Weld Pool in Production Welding with a Laser” Journ. Phys. D. Applied Phys. Vol 22 pp 1050–1061 1988.

    Article  Google Scholar 

  21. Li L., Steen W.M. “Non contact acoustic emission monitoring during laser welding” Proc ICALEO’92 pp719–728.

    Google Scholar 

  22. Li.L, Brookfield D.J., Steen W.M. “In-process laser weld monitoring” Proc I1W Asian Pacific Welding Congress Feb 1996 1: pp 119–136.

    Google Scholar 

  23. Chen H.B., Li L., Steen W.M., Brookfield D.J. “Multi-frequency fibre optic sensors for in-process laser wekding quality monitoring” Lourn Non destructive testing and evaluation Vol 26. No. 2 pp 67–73 April 1993.

    Google Scholar 

  24. Goldberg.F. “Inductive Seam Tracking Improves Mechanisation and Robotic Welding” Proc Automation and Robotisation of Welding, Strasbourg France (1985).

    Google Scholar 

  25. Hanicke.L.“Laser technology within the Volvo Car Corporation” Proc 4th Int Conf. Lasers in Manufacturing (LIM4) B’ham UK May 1987 pubi IFS(publ) Bedford, UK and Springer-Verlag, Berlin FRG 1987 pp49–58.

    Google Scholar 

  26. Li.L Ph.D. Thesis, London University 1989.

    Google Scholar 

  27. Morgan S.A., Fox M.D.T., McClean MA, Hand D.P., Haran F.M., Su D., Steen W.M., Jones J.D.C.“Real time process control in CO2 laser welding and direct casting focus and temperature” Proc Int conf ICALEO’97 San Diego USA to be published.

    Google Scholar 

  28. Lucas.J., Smith.J.S., “Seam Following for Automatic Welding” Proc SPIE Conf. Laser Technologies in Industry vol 952 ed. O.D.D.Soares June 1988 Porto, Portugal pp559–564.

    Google Scholar 

  29. Sloan.K., Lucas.J. “Microprocessor Control of TIG Welding Systems” IEE Proc. pt.D 1,pp 1–8 1982.

    Google Scholar 

  30. Oomen.G., Verbeek.W. “A Real Time Optical Profile Sensor for Robot Arc Welding” Proc Intelligent Robots ROVISEC 3 Cambridge Mass (1984).

    Google Scholar 

  31. Rubruck.V., Geisler.E., Bergmann.H.W., “Case Depth Control for Laser Treated Materials” Proc 3rd Europ. Conf. Laser Treatment of Materials ECLAT90 Erlangen, Germany, publ Sprechsaal, Coburg, Germany, Sept 1990 pp 207–216.

    Google Scholar 

  32. Juvin.D., de Prunelle.D., Lerat.B. “SAO par Imagerie:chrw(133)” Proc Aut des procedes de Soudage, Grenoble, France (1986).

    Google Scholar 

  33. Zheng.H.Y., Brookfield.D.J., Steen.W.M. “The Use of Fibre Optics for In-process Monitoring of Laser Cutting” ICALEO’89 Orlando, Florida, USA 12–22 Oct 1989 140/LIA vol 69 pp140154.

    Google Scholar 

  34. Olsen.F. “Investigations in Methods for Adaptive Control of Laser Processing” Opto Electronik Magazin 4, 2.

    Google Scholar 

  35. Miyamoto.I, Ohie.T., Maruo.H. “Fundamental Study of In-Process Monitoring in Laser Cutting” Proc CISFFEL 4 Cannes, France (1988).

    Google Scholar 

  36. Li.L, Qi.N, Steen.W.M., Brookfield.D.J. “On Line Laser Weld Monitoring for Quality Control” Proc ICALEO’90 coni Nov 1990 Boston, USA to be published LIA Tulsa, Oklahoma USA.

    Google Scholar 

  37. Beyer.E.“Plasma Fluctuation in Laser Welding with CW CO, Laser” Proc ICALEO’87 San Diego USA May 1987 publ IFS publ and Springer-Verlag in assoc LIA Toledo USA 1988 pp 17–23.

    Google Scholar 

  38. Li.L., Steen.W.M., Hibberd.RD., Brookfield.D.J. “In-process Monitoring of Clad Quality using Optical Method” Proc SPIE conf. Hague March 1990 vol 1279, pp 89–100.

    Article  Google Scholar 

  39. Burg.B. “Smart Laser Cutter” Proc SPIE coni Innsbruck, Austria April 1986 vol 650 ed. Schoucker publ. SPIE, Bellingham, Washington USA 1986 pp 271–278.

    Google Scholar 

  40. Li.L., Hibberd.R.D., Steen.W.M. “In-Process Laser Power Moni toring and Feedback Control” Proc 4th Int Conf on Lasers in Manufacturing LIM4 ed W.M.Steen Birmingham UK May 1987 publ IFS publ Ltd. Bedford UK pp 165–175 1987.

    Google Scholar 

  41. Drenker.A., Beyer.E., Boggering.L., Kramer.R, Wissenbach.K. “Adaptive Temperature Control in Transformation Hardening” Proc 3rd Europ. Conf on Laser Treatment of materials ECLAT’90 Erlangen, Germany Sept. 1990 publ Sprechsaal, Coburg, Germany, pp 283–290.

    Google Scholar 

  42. Li.L., Steen.W.M., Hibberd.RD., Weerasinghe.V.M. “Real Time Expert System for Supervisory Control of Laser Cladding” Proc ICALEO’87 San Diego USA May 1987 publ IFS pubi and Springer-Verlag in assoc LIA Toledo USA 1988 p9–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London

About this chapter

Cite this chapter

Steen, W.M. (1998). Laser Automation and In-Process Sensing. In: Laser Material Processing. Springer, London. https://doi.org/10.1007/978-1-4471-3609-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3609-5_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76174-7

  • Online ISBN: 978-1-4471-3609-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics