Skip to main content

Wave Optics

  • Chapter
  • 847 Accesses

Abstract

The geometrical treatment of the propagation of light presented in the preceding chapter is only an approximate description. It does not take the spatial amplitude distribution of the electromagnetic wave into account. Geometrical optics can be applied as long as the wavelength is small compared to the lateral extent of the wave. This restriction, as already discussed, is equivalent to a large Fresnel number N. The exact description of the propagation of light is obtained by utilizing Maxwell’s equations to derive the wave equations for the electric and the magnetic fields. If we neglect the vector properties of the field, the wave equation for the electric field E in homogeneous, isotropic, loss-free, dielectric media reads [1.1,1.3,1.40]:

$$ \frac{{{\partial ^2}E}}{{\partial {x^2}}} + \frac{{{\partial ^2}E}}{{\partial {y^2}}} + \frac{{{\partial ^2}E}}{{\partial {z^2}}} - \frac{1}{{{c^2}}}\frac{{{\partial ^2}E}}{{\partial {t^2}}} = 0 $$
((2.1))

with c being the speed of light in the medium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2 Wave Optics

  1. A. Rubinowicz, Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen, Annalen der Physik 53(12), 257, 1917

    Article  Google Scholar 

  2. A. G. Fox, T. Li, Modes in a maser interferometer with curved and tilted mirrors, Proc. IEEE 51, 80, 1963

    Article  Google Scholar 

  3. E. Wolf, E.W. Marchand, Comparison of the Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction at an aperture, J. Opt. Soc. Am. 54(5), 587, 1964

    Article  MathSciNet  Google Scholar 

  4. M. Abramowitz, A. Stegun: Handbook of mathematical functions. New York: Dover Publ. 1964

    MATH  Google Scholar 

  5. H. Kogelnik, T. Li, Laser beams and resonators, Proc. IEEE 54, 1312, 1966

    Article  Google Scholar 

  6. J.W. Goodman: Introduction to Fourier optics, Physical and Quantum Series. London, New York, San Francisco: McGraw Hill 1968

    Google Scholar 

  7. P. Baues, Huygens’ principle in inhomogeneous isotropic media and a general integral equation applicable to optical resonators, Opto-Electr.1, 37, 1969

    Article  Google Scholar 

  8. S.A. Collins, Diffraction-integral written in terms of matrix-optics, J. Opt. Soc. Am. 60(9), 1168, 1970

    Article  Google Scholar 

  9. J. A Arnaud, Nonorthogonal optical waveguides and resonators, Bell. Syst. Tech. J. 49, 2311, 1970

    MathSciNet  MATH  Google Scholar 

  10. J.A. Arnaud, Hamiltonian theory of beam mode propagation, in: Progress in Optics XI, editor: E. Wolf; Amsterdam: North Holland 1973, pp. 247

    Chapter  Google Scholar 

  11. M.J. Bastiaans, Wigner distribution function and its application to first order optics, J. Opt. Soc. Am. 69, 1710, 1979

    Article  Google Scholar 

  12. H.O. Bartelt, K.-H. Brenner, A.W. Lohmann, The Wigner distribution function and its optical production, Opt. Commun. 32, 32, 1980

    Article  Google Scholar 

  13. M.V. Klein, T.E. Furtak: Optics. 2nd edition, New York, Chichester, Brisbane, Toronto, Singapore: Wiley & Sons 1986, pp. 647–653

    Google Scholar 

  14. J. Durnin, Exact solutions for nondiffracting beams, J. Opt. Soc. Am. A 4(4), 651, 1987

    Article  Google Scholar 

  15. J. Durnin, J.J. Miceli, J.H. Eberly, Diffraction-free beams, Phys. Rev. Lett. 58(15), 1499, 1987

    Article  Google Scholar 

  16. R Simon, N. Nukunda, E.C.G. Sudarshan, Partially coherent beams and a generalized ABCD-law, Optics Commun. 65, 322, 1988

    Article  Google Scholar 

  17. R Simon, N. Mukunda, E.C.G. Sudarshan, Partially coherent beams and a generalized ABCD-law, Opt. Commun. 65(5), 322, 1988

    Article  Google Scholar 

  18. A.E. Siegman, New developments in laser resonators, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1224, 2, 1990

    Google Scholar 

  19. J.A. Arnaud, H. Kogelnik, Gaussian light beams with general astigmatism. Appl. Opt. 8(8), 1686, 1969

    Article  Google Scholar 

  20. L. Quigang, W. Shaomin, J. Alda, J. Bernabeu, Transformation of nonsymnmetric Gaussian beams into symmetric ones by means of tensor ABCD law, Optic 85, 67, 1990

    Google Scholar 

  21. H.S. Lee, B.W. Stewart, D. Will, H Fenichel, Holographic Bessel beam amplification, Appl. Phys. Lett. 59(54), 3096, 1991

    Article  Google Scholar 

  22. P.A. Bélanger, Beam propagation and the ABCD ray matrices, Opt. Lett. 16, 196, 1991

    Article  Google Scholar 

  23. M.J. Bastiaans, Second-order moments of the Wigner distribution function in first-order optical systems, Optik 88, 163, 1991

    Google Scholar 

  24. J. Serna, R. Martinez-Herrero, P.M. Mejias, Parametric characterization of generally partially coherent beams propagating through ABCD optical systems, J. Opt. Soc. Am. A 8, 1094, 1991

    Article  Google Scholar 

  25. K E. Oughstun, editor, Selected papers on scalar wave diffraction, SPIE Milestone Series Volume MS 51. Bellingham, WA: The Society of Photo-Optical Instrumentation Engineers 1992

    Google Scholar 

  26. H. Weber, Propagation of higher-order intensity moments in quadratic-index media, Opt. Quantum Electron. 24, 1027, 1992

    Article  Google Scholar 

  27. N. Reng, B. Eppich, Definition and measurements of high-power laser beam parameters, Opt. Quantum Electron. 24, 973, 1992

    Article  Google Scholar 

  28. G. Nemes, Measuring and handling general astigmatic beams, Proceedings of the workshop on laser beam characterization, eds.: P.M. Mejias, H. Weber, R. Martinez-Herrero, A. Gonzales-Urena, Sociedad Espanola de Optica, Madrid 1993, pp. 325–358.

    Google Scholar 

  29. Document ISO/TC 172/SC 9/WG 1 N 55, ISO/CD 11 145, Optics and optical instruments — Lasers and laser related equipment — Terminoloy, symbols and units of measure for the specification and testing of lasers and laser ensembles, Nov. 26, 1993

    Google Scholar 

  30. Document ISO/TC 172/SC 9/WG 1 N 56, ISO/CD 11 146, Optics and optical instruments — Lasers and laser related equipment — Test methods for laser beam parameters: Beam width, divergence angle and beam propagation factor, Nov. 26, 1993

    Google Scholar 

  31. B. Eppich, R. Kostka, N. Reng, H. Weber, High power laser beam characterisation, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 2206, High power gas and solid state lasers, 469, 1994

    Google Scholar 

  32. G Nemes, A.E. Siegman, Measurement of all ten second-order moments of an astigmatic beam by use of rotating simple astigmatic (anamorphic) optics, J. Opt. Soc. Am. A 11(8), 2257, 1994

    Article  Google Scholar 

  33. A. Yariv, Imaging of coherent fields through lenslike systems, Opt. Lett. 19(20), 1607, 1994

    Article  Google Scholar 

  34. R. Martinez-Herrero, P.M. Mejias, C. Martinez, Parametric characterization of the phase at the far field, Opt. Lett. 20(7), 651, 1995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London

About this chapter

Cite this chapter

Hodgson, N., Weber, H. (1997). Wave Optics. In: Optical Resonators. Springer, London. https://doi.org/10.1007/978-1-4471-3595-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3595-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3597-5

  • Online ISBN: 978-1-4471-3595-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics