Skip to main content

Single Mode Resonators

  • Chapter
Optical Resonators
  • 850 Accesses

Abstract

Without additional frequency selecting elements, most lasers utilizing linear resonators emit at several axial modes. A resonator operating in a single transverse mode, exhibits a frequency spectrum which consists of multiple lines. If we neglect the frequency pulling induced by the gain profile, these emission lines are spectrally separated by c 0/(2L), where L is the optical resonator length and c 0 is the speed of light in a vacuum. In inhomogeneously broadened lasers, all axial modes are observed that experience a gain high enough to overcome the resonator losses (Fig. 21.1a). Since no interaction between different axial modes occurs, the number of oscillating axial modes increases as the gain is increased. Far above the laser threshold, the number of observed axial modes n can be approximated by:

$$ n = \frac{{\Delta v\,2L}}{{{c_0}}}$$
((21.1))

where Δν is the gain bandwidth of the active medium (see Table 4.2 for bandwidths of common lasers). Inhomogeneous line broadening is found in low pressure gas lasers (HeNe, AR, CO2) and in semiconductor lasers at high injection currents. In both laser types, typically on the order of 10 axial modes oscillate simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Evans, The birefringent filter, J. Opt. Soc. Am 39, 229, 1949

    Article  Google Scholar 

  2. E. Evtuhov, A.E. Siegman, A ‘twisted-mode’ technique for obtaining axially uniform energy density in a laser cavity, Appl. Opt. 4, 142, 1965

    Article  Google Scholar 

  3. P. Zory, Single frequency operation of argon ion lasers, IEEE J. Quantum Electron. QE-3, 390, 1967

    Article  Google Scholar 

  4. V.P. Belayev, V.A. Burmakin, A.N. Evtyunin, F.A. Korolyov, V.V. Lebedeva, A.I. Odintzov, High power single frequency argon ion laser, IEEE J. Quantum Electron. QE-5, 589, 1969

    Article  Google Scholar 

  5. M. Francon, S. Mullik, Polarization Interferometers. Chichester: Wiley 1971

    Google Scholar 

  6. P.W. Smith, Mode selection in lasers, Proc. IEEE 60, 422, 1972

    Article  Google Scholar 

  7. H.W. Schröder, H. Dux, H. Welling, Single mode operation of cw dye lasers, Appl. Phys. 1, 347, 1973

    Article  Google Scholar 

  8. A.E. Siegman, An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mode locking and cavity dumping, IEEE J. Quant. Electron. QE-9, 247, 1973

    Article  Google Scholar 

  9. R.X. Barger, M.S. Sorem, J.L. Hall, Frequency stabilization of a cw dye laser, Appl. Phys. Lett. 22, 583, 1973

    Article  Google Scholar 

  10. A.L. Bloom, Modes of a laser resonator containing tilted birefringent plates, J. Opt. Soc. Am 64, 447, 1974

    Article  Google Scholar 

  11. R. Beigang, G. Litfin, H. Welling, Frequency behavior and linewidth of a cw single mode color center laser, Opt. Commun. 22, 269, 1977

    Article  Google Scholar 

  12. M. Pinard, N. Leduc, G. Trenec, C.G. Aminof, F. Laloe, Efficient single-mode operation of a standing wave dye laser. Appl. Phys. 19, 399, 1978

    Article  Google Scholar 

  13. K. Liu, M. G. Littman, Novel geometry for single-mode scanning of tunable lasers, Opt. Lett. 6, 117, 1981

    Article  Google Scholar 

  14. M.W. Fleming, A. Mooradian, Spectral characteristics of external-cavity controlled semiconductor lasers, IEEE J. Quantum Electron. QE-17, 44, 1981

    Article  Google Scholar 

  15. L. Goldberg, H.F. Taylor, A. Dandridge, J.F. Weller, R.O. Miles, Spectral characteristics of semiconductor lasers with optical feedback, IEEE J. Quantum Electron. QE-18, 555, 1982

    Article  Google Scholar 

  16. J. H. Osmundsen, N. Gade, Influence of optical feedback on laser frequency spectrum and threshold conditions, IEEE J. Quantum Electron. QE-19, 465, 1983

    Article  Google Scholar 

  17. W.T. Tsang, N.A. Olsson, R.A. Logan, High-speed direct single-frequency modulation with a large tuning rate and frequency excurstion in cleaved-coupledcavity semiconductor lasers, Appl. Phys. Lett. 42, 650, 1983

    Article  Google Scholar 

  18. R Wyatt, W.J. Devlin, 10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range, Electron. Lett. 19, 110, 1983

    Article  Google Scholar 

  19. M.G. Littman, Single-mode pulsed tunable dye laser, Appl. Opt. 23, 4465, 1984

    Article  Google Scholar 

  20. M. J. Adams, J. Buus, Two segment cavity theory for mode selection in semiconductor lasers, IEEE J. Quantum Electron. QE-20, 99, 1984

    Article  Google Scholar 

  21. T.J. Kane, R.L. Byer, Monolithic, unidirectional single-mode Nd:YAG ring laser, Opt. Lett. 10, 65, 1985

    Article  Google Scholar 

  22. A.E. Siegman: Lasers. Mill Valley: University Science Books 1986, pp. 524–538

    Google Scholar 

  23. T.J. Kane, A.C. Nilsson, K.L. Byer, Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator, Opt. Lett. 12, 175, 1987

    Article  Google Scholar 

  24. B. Dahmani, L. Hollberg, R Drullinger, Frequency stabilization of semiconductor lasers by resonant optical feedback, Opt. Lett. 12, 876–878, 1987

    Article  Google Scholar 

  25. W. Fuhrmann, W. Demtröder, A widely tunable single-mode GaAs diode laser with external cavity, Appl. Phys. B 49, 29, 1988

    Article  Google Scholar 

  26. Ch. Salomon, D. Hills, J.L. Hall, Laser stabilization at the millihertz level, J. Opt. Soc. Am B 5, 1576, 1988

    Article  Google Scholar 

  27. M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Design performance of a few-kilohertz-linewidth dye laser stabilized by reflection in an optical resonator, Opt. Lett. 13, 823, 1988

    Article  Google Scholar 

  28. K.M. Abramski, D.R. Hall, Frequency stabilisation of lasers, in D.R. Hall, P.E. Jackson (eds.): The physics and technology of laser resonators. London: Adam Hilger 1989, pp. 117–131

    Google Scholar 

  29. J. Zayhovski, A. Mooradian, Frequency-modulated Nd: YAG microchip lasers, Opt. Lett. 14, 618, 1989

    Article  Google Scholar 

  30. T. Day, A.C. Nilsson, M.M. Fejer, A.D. Farinas, E.K. Gustafson, C.D. Nabors, R.L. Byer, 30-Hz linewidth, diode-laser-pumped, Nd:GGG nonplanar ring oscillators by active frequency stabilization, Electron. Lett. 25, 810, 1989

    Article  Google Scholar 

  31. R Kallenbach, G Zimmermann, D.H. Mclntyre, T.W. Hansen, RG DeVoe, A blue dye laser with sub-kilohertz stability, Opt. Commun. 70, 56, 1989

    Article  Google Scholar 

  32. D. Shoemaker, A Brillet, C.N. Man, O. Cregut, G. Kerr, Frequency-stabilized laser-diode pumped Nd: YAG laser, Opt. Lett. 14, 609, 1989

    Article  Google Scholar 

  33. P. Fritschel, A Jeffries, T. Kane, Frequency fluctuations of a diode-pumped Nd:YAG ring laser, Opt. Lett. 14, 993, 1989

    Article  Google Scholar 

  34. G.J. Kintz, T. Baer, Single-frequency operation in solid- state laser materials with short absorption depths, IEEE J. Quantum Electron. 26, 1457, 1990

    Article  Google Scholar 

  35. T. Day, E.K. Gustafson, R.L. Byer, Active frequency stabilization of a 1.062-um, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth, Opt. Lett. 15, 221, 1990

    Article  Google Scholar 

  36. A Hemmerich, D.H. Mclntyre, D. Schropp Jr., D. Meschede, T.W. Hansen, Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy, Opt. Commun. 75, 118, 1990

    Article  Google Scholar 

  37. E.A.P. Cheng, T.J. Kane, High-power single-mode diode-pumped Nd:YAG laser using a monolithic nonplanar ring resonator, Opt. Lett. 16, 478, 1991

    Article  Google Scholar 

  38. T. Taira, A Mukai, Y. Nozawa, T. Kobayashi, Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip laser, Opt. Lett. 16, 1955, 1991

    Article  Google Scholar 

  39. F. Zhou, A.I. Ferguson, Frequency stabilization of a diode-laser-pumped microchip Nd:YAG laser at 1.3um, Opt. Lett. 16, 79, 1991

    Article  Google Scholar 

  40. H. Nagai, M. Kume, A. Yoshikawa, K. Itoh, Low-noise operation (-140dB/Hz)in close-coupled Nd: YV04 second-harmonic lasers pumped by single-mode laser diodes, Appl. Opt. 32, 6610, 1991

    Article  Google Scholar 

  41. D.T. Cassidy, D.M. Bruce, B.F. Ventrudo, Short-external-cavity module for enhanced single-mode-tuning of InGaAsP and AlGaAs semiconductor diode lasers, Rev. Sei. Instrum. 62, 2385, 1991

    Article  Google Scholar 

  42. W. Demtröder, Laserspektroskopie. Berlin, Heidelberg, New York, London, Paris Tokyo: Springer Verlag, pp. 176–191, 1991

    Google Scholar 

  43. T. Day, E.K. Gustafeon, R.L. Byer, Sub-hertz relative frequency stabilization of two diode-laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer, IEEE J. Quantum Electron. 28, 1106, 1992

    Article  Google Scholar 

  44. M. de Labachelerie, C. Lattrasse, P. Kemssu, P. Cerez, The frequency control of laser diodes, J. Phys. ffl France 2, 1557, 1992

    Article  Google Scholar 

  45. P.A. Ruprecht, J.R. Branderberg, Enhancing diode laser tuning with a short external cavity, Opt. Commun. 93, 82, 1992

    Article  Google Scholar 

  46. J. Harrison, A. Finch, J.H. Flint, P.F. Moulton, Broad-band rapid tuning of a single-frequency diode-pumped neodymium laser, IEEE J. Quantum Electron. 28(4), 1123, 1992

    Article  Google Scholar 

  47. N. Uehara, K. Ueda, 193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd: YAG ring lasers, Opt. Lett. 18, 505, 1993

    Article  Google Scholar 

  48. N.M. Sampas, E.K. Gustafson, R.L. Byer, Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry-Perot interferometers, Opt. Lett. 18, 947, 1993

    Article  Google Scholar 

  49. M. Zhu, J.L. Hall, Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with external stabilizer, J. Opt. Soc. Am. B 10, 802, 1993

    Article  Google Scholar 

  50. N. Uehara, K. Ueda, Ultrahigh-frequency stabilization of a diode-pumped Nd:YAG laser with a high-power-acceptance photodetector, Opt. Lett. 19, 728, 1994

    Article  Google Scholar 

  51. S. Taccheo, S. Longhi, L. Pallaro, P. Laporta, C. Svelto, E. Bava, Frequency stabilization to a molecular line of a diode-pumped Er-Yb laser at 1533-nm wavelength, opt. Lett. 20, 2420, 1995

    Article  Google Scholar 

  52. L. Viana, S.S. Vianna, M. Oriá, J. W.R. Tabosa, Diode laser mode selection using a long external cavity, Appl. Opt. 35, 368, 1996

    Article  Google Scholar 

  53. K.I. Martin, W.A. Clarkson, D.C. Hanna, 3W of single frequency output at 532 nm by intracavity doubling of a diode-bar-pumped Nd.YAG ring laser, Opt. Lett. 21(12), 875, 1996

    Article  Google Scholar 

  54. M. Hyodo, T. Carty, K. Sakai, Near shot-noise-level relative frequency stabilization of a laser-diode-pumped Nd:YVO4 microchip laser, Appl. Opt. 24(24), 4749, 1996

    Article  Google Scholar 

  55. Coherent Laser Group, 8.5W of single frequency 532nm light from a diode pumped intra-cavity doubled ring laser, Optics and Photonics News 7(9), 51, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London

About this chapter

Cite this chapter

Hodgson, N., Weber, H. (1997). Single Mode Resonators. In: Optical Resonators. Springer, London. https://doi.org/10.1007/978-1-4471-3595-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3595-1_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3597-5

  • Online ISBN: 978-1-4471-3595-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics