Advertisement

Resonators for Annular Gain Media

  • Norman Hodgson
  • Horst Weber

Abstract

In high power gas and solid state lasers the maximum output power is limited by the efficiency of heat removal. The temperature rise associated with the heat generated by the pump process leads to a decrease of the stimulated emission cross section and an increase of the lower laser level population. For sealed-off CO2 lasers in cylindrical geometry, these effects reduce the maximum output power per length to about 80W/m, independent of the tube diameter. Furthermore, in solid state laser materials, the pump induced stress causes irreversible damage to the medium if the pump power is increased beyond the fracture limit. The experimentally established fracture limit of a flashlamp pumped Nd: YAG rod allows up to 40W of output power per cm of rod length.

Keywords

Maximum Output Power Output Coupling Radial Mode Azimuthal Mode Unstable Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 19 Resonators for Annular Gain Media

  1. 5.107
    J.R. Pierce, Theory and Design of Electron Beams. New York: Van Nostrand: 1954, pp. 194–197Google Scholar
  2. 5.108
    D. Herriot, H. Kogelnik, R. Kompfher, Off-axis paths in spherical mirror interferometers, Appl. Opt. 3, 523, 1964CrossRefGoogle Scholar
  3. 5.109
    H. Kogelnik, T. Bridges, A nonresonant multipass CO2 laser amplifier, IEEE J. Quantum Electron. QE-3, 95, 1967CrossRefGoogle Scholar
  4. 5.110
    K.G. Greenler, Multiple reflection of light between nonparallel reflecting surfaces, J. Opt. Soc. Am. 57, 1062, 1973CrossRefGoogle Scholar
  5. 5.111
    D. Milam, H. Schlossberg, Emission characteristics of a tube-shaped laser oscillator, J. Appl. Phys. 44, 2297, 1973CrossRefGoogle Scholar
  6. 5.112
    P. Burlamacchi, R. Partesi, High-efficiency coaxial waveguide dyelaser with internal excitation, Appl. Phys. Lett. 23, 475, 1973CrossRefGoogle Scholar
  7. 5.113
    L.W. Casperson, Cylindrical laser resonators, J. Opt. Soc. Am. 63, 25, 1973CrossRefGoogle Scholar
  8. 5.114
    L.W. Casperson, M. Shabbir Shekhani, Mode properties of annular gain lasers, Appl. Opt 14, 2653, 1975CrossRefGoogle Scholar
  9. 5.115
    R.A. Chodzko, S.B. Mason, E.F. Cross, Annular converging wave cavity, Appl. Opt. 9, 2137, 1976CrossRefGoogle Scholar
  10. 5.116
    R.J. Freiberg, D.W. Fradin, P.P. Chenausky, Split-mode unstable resonator, Appl. Opt. 16, 1192, 1977CrossRefGoogle Scholar
  11. 5.117
    A.H. Paxton, J.H. Erkkila, Annular converging wave resonator: new insights, Opt. Lett. 1, 166–168, 1977CrossRefGoogle Scholar
  12. 5.118
    P.B. Mumola, H.J. Robertson, G.N. Steinberg, J.L. Kreuzer, A.W. McCullough, Unstable resonators for annular gain volume lasers, Appl. Opt. 17, 936, 1978CrossRefGoogle Scholar
  13. 5.119
    J.W. Ogland, Mirror systems for uniform beam transformation in high-power annular lasers, Appl. Opt. 17, 2917, 1978CrossRefGoogle Scholar
  14. 5.120
    D. Fink, Polarization effects of axicons, Appl. Opt. 18, 581, 1979CrossRefGoogle Scholar
  15. 5.121
    W.R. Trutna, R.L. Byer, Multiple-pass Raman gain cell, Appl. Opt. 19, 301, 1980CrossRefGoogle Scholar
  16. 5.122
    R.A. Chodzko, S.B. Mason, E.B. Turner, W.W. Plummer Jr., Annular (HSURIA) resonators: some experimental studies including polarization effects, Appl. Opt. 19, 778, 1980CrossRefGoogle Scholar
  17. 5.123
    W.P. Latham Jr., Polarization effects in a half-symmetric unstable resonator with a coated rear cone, Appl. Opt. 19, 1222, 1980CrossRefGoogle Scholar
  18. 5.124
    J.K. Guha, J.L. Martin, RA Mickish, E.E. Pape, Performance of a coated cone in an annular resonator, Appl. Opt. 20, 3089, 1981CrossRefGoogle Scholar
  19. 5.125
    J.K. Guha, D. Kohler, R. Mickish, J. Martin, E. Pape, P. Briggs, C. Greninger, Performance of an annular resonator with a polarizer in the annular leg, Appl. Opt. 20, 4135, 1981CrossRefGoogle Scholar
  20. 5.126
    L.W. Casperson, P.M. Schienert, Multipass resonators for annular gain lasers, Opt. Quantum Electron. 13, 193, 1981CrossRefGoogle Scholar
  21. 5.127
    T.R. Ferguson, M.E. Smithers, Toric unstable resonators, Appl. Opt. 33, 2122, 1984CrossRefGoogle Scholar
  22. 5.128
    A.H. Paxton, Propagations of high-order azimuthal Fourier terms of the amplitude distribution of a light beam: a useful feature, J., Opt. Soc. Am A 1, 319, 1984CrossRefGoogle Scholar
  23. 5.129
    S. Marchetti, Multipass systems with mirrors of different radii, Optics and Laser Technology 18(5), Oct. 1986Google Scholar
  24. 5.130
    J.G. Xin, D.R. Hall, Multipass coaxial radiofrequency discharge CO2 laser, Opt. Commun. 58, 420, 1986CrossRefGoogle Scholar
  25. 5.131
    V.A. Seguin, H.J.J. Seguin, C.E. Capjack, S.K. Nikumb, H. Reshe, Multiple pass unstable resonator for an annular gain CO2 laser, Appl. Opt. 25, 3825, 1986CrossRefGoogle Scholar
  26. 5.132
    H. Schülke, G. Herziger, R. Wester, Multipass resonators for laser systems, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 801, High Power Lasers: Sources, laser-material interactions, high excitations, and fast dynamics, 45, 1987Google Scholar
  27. 5.133
    J.G. Xin, D.R. Hall, Compact, multipass, single transverse mode CO2 laser, Appl. Phys. Lett. 51, 469, 1987CrossRefGoogle Scholar
  28. 5.134
    Y. Takada, H. Saito, T. Fujioka, Eigenmode of an annular resonator, IEEE J. Quantum Electron. 24, 11, 1988CrossRefGoogle Scholar
  29. 5.135
    J.G. Xin, A Duncan, D.R. Hall, Analysis of hyperboloidal ray envelopes in Herriot cells and their use in laser resonators, Appl. Opt. 28, 4576, 1989CrossRefGoogle Scholar
  30. 5.136
    J.K. Jabczyński, A diffraction-free resonator, Opt. Commun. 77, 292, 1990CrossRefGoogle Scholar
  31. 5.137
    A. Duncan, J.G. Xin, D.R. Hall, Herriot cell for large-area gas discharge lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1224, 312, 1990Google Scholar
  32. 5.138
    U. Wittrock, H. Weber, B. Eppich, Inside-pumped Nd:YAG tube laser, Opt. Lett. 16, 1092, 1991CrossRefGoogle Scholar
  33. 5.139
    N. Hodgson, Q. Lü, S. Dong, B. Eppich, U. Wittrock, High power solid state lasers in rod-, slab-, and tube geometry, Laser und Optoelektronik 23(3), 82, 1991Google Scholar
  34. 5.140
    U. Habich, A Bauer, P. Loosen, H.-D. Plum, Resonators for coaxial slow-flow CO2 lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1397, Eighth International Symposium on Gas Flow and Chemical Lasers, 383, 1991Google Scholar
  35. 5.141
    M. Morin, P.-A Bélanger, Diffractive analysis of annular resonators, Appl. Opt. 31, 1942, 1992CrossRefGoogle Scholar
  36. 5.142
    U. Wittrock, High power rod slab and tube lasers, NATO ASI, International School of Quantum Electronics, Elba, Italy, September 1992.Google Scholar
  37. 5.143
    U. Wittrock, B. Eppich, O. Holst, Internally-pumped Nd:YAG tube laser with 10% efficiency and 1.8kW output power, Conference on Laser and Electo-Optics 1993, CWI 7. Washington: Optical Society of America, 1993Google Scholar
  38. 5.144
    D. Ehrlichmann, U. Habich, H.-D. Plum, Azimuthal mode mscrimination of annular resonators, Appl. Opt. 32(33), 6582, 1993CrossRefGoogle Scholar
  39. 5.145
    D. Ehrlichmann, U. Habich, H-D. Plum, Dimision-cooled CO2 laser with coaxial high frequency excitation and internal axicon, J. Phys. D: Appl. Phys. 26, 183, 1993CrossRefGoogle Scholar
  40. 5.146
    U. Habich, H.-D. Plum, D. Ehrlichmanii, P. Loosen, Tilted annular resonator, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 2095, 46, 1993Google Scholar
  41. 5.147
    D. Ehrlichmann, U. Habich, H.-D. Plum, High-power CO2 laser with coaxial waveguide and diffusion cooling, IEEE J. Quantum Electron. 29(7), 2211, 1993CrossRefGoogle Scholar
  42. 5.148
    D. Ehrlichmann, U. Habich, H.-D. Plum, P. Loosen, Stable-unstable resonators for annular gain media, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 2206, High power gas and solid state lasers, 54, 1994Google Scholar
  43. 5.149
    A. Lapucci, F. Rossetti, P. Burlamacchi, Beam properties of an R.F.- discharge annular CO2laser, Opt. Commun. 111, 290, 1994CrossRefGoogle Scholar
  44. 5.150
    D. Ehrlichmann, U. Habich, H.-D. Plum, Ring resonator for lasers with annular gain media, Appl. Opt. 33(30), 6919, 1994CrossRefGoogle Scholar
  45. 5.151
    D. Ehrlichmann, U. Habich, H.-D. Plum, P. Loosen, G. Herziger, Azimuthally unstable resonators for high-power CO2 lasers with annular gain media, IEEE J. Quantum Electron. 30(6), 1441, 1994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 1997

Authors and Affiliations

  • Norman Hodgson
    • 1
  • Horst Weber
    • 2
  1. 1.Humphrey InstrumentsCarl Zeiss Inc.San LeandroUSA
  2. 2.Optisches InstitutTechnische Universität BerlinBerlinGermany

Personalised recommendations