Skip to main content

Hybrid Resonators

  • Chapter
  • 834 Accesses

Abstract

If one or both resonator mirrors exhibit different radii of curvature in the x and the y directions (cylinder mirrors or toric mirrors), the g-parameters of the resonator, and consequently the resonator properties, become different for the two directions. Different mode properties in the x and the y directions are also obtained for spherical resonator mirrors if the corresponding effective resonator lengths are different. This happens if the surface normals of intracavity optical elements exhibit an angle with respect to the optical axis. Examples are solid state slab lasers and ring resonators. In most of these cases, the resonator works stable or unstable in both directions and the output beam can be described by astigmatic stable or unstable resonator modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 18 Hybrid Resonators

  1. A. Borghese, R. Canevari, V. Donati, L. Garifo, Unstable-stable resonators with toroidal mirrors, Appl. Opt. 15, 3547, 1981

    Article  Google Scholar 

  2. P.E. Dyer, D.J. James, Studies of a TEA CO2 laser with a cylindrical mirror unstable resonator, Opt. Commun. 15, 20, 1975

    Article  Google Scholar 

  3. E.A. Phillips, J.P. Reilly, D.P. Northam, Off-axis unstable laser operation, Appl. Opt. 8, 2241, 1976

    Google Scholar 

  4. G.W. Sutton, M.M. Weiner, S.A. Mani, Fraunhofer diffraction patterns from uniformly illuminated square output apertures with noncentered square obscurations, Appl. Opt. 15, 2228, 1976

    Article  Google Scholar 

  5. M.M. Weiner, Modes of empty off-axis unstable resonators with rectangular mirrors, Appl. Opt 18, 1828, 1979

    Article  Google Scholar 

  6. O.L. Bourn, P.E. Dyer, A novel stable-unstable resonator for beam control of rare-gas halides lasers, Opt. Commun. 31, 193, 1979

    Article  Google Scholar 

  7. R. Simon, Laser cavities bounded by crossed cylindrical mirrors, J. Opt. Soc. Am. A 4, 1953, 1987

    Article  Google Scholar 

  8. N. Hodgson, T. Haase, H. Weber, Improved resonator design for rod lasers and slab lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1277, High power solid state lasers and applications, 70, 1990

    Google Scholar 

  9. K. Kuba, T. Yamamoto, S. Yagi, Improvement of slab-laser beam divergence by using an off-axis unstable-stable resonator, Opt. Lett. 15, 121, 1990

    Article  Google Scholar 

  10. N. Hodgson, T. Haase, Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators, Opt. Quantum Electron. 24, 903, 1992

    Article  Google Scholar 

  11. A. E. Siegman, Stable-unstable resonator design for a wide tuning-range free-electron laser, IEEE J. Quantum Electron. 28, 1243, 1992

    Article  Google Scholar 

  12. E. Snitzer, Cylindrical dielectric waveguide modes, J. Opt. Soc. Am. 51, 491, 1961

    Article  MathSciNet  Google Scholar 

  13. E.A.J. Marctili, R.A. Schmeltzer, Hollow metallic and dielectric waveguides for long distance optical transmission and lasers, Bell. Syst. Tech. J. 43, 1783, 1964

    Google Scholar 

  14. P.W. Smith, A waveguide gas laser, Appl. Phys. Lett. 19, 132, 1971

    Article  Google Scholar 

  15. A.N. Chester, R.L. Abrams, Mode losses in hollow-waveguide lasers, Appl. Phys. Lett. 21, 576, 1972

    Article  Google Scholar 

  16. R.L. Abrams, Coupling losses in hollow waveguide laser resonators, IEEE J. Quantum Electron. QE-8, 838, 1972

    Article  Google Scholar 

  17. R.L. Abrams, W.B. Bridges, Characteristics of sealed-off waveguide CO2 lasers, IEEE J. Quantum Electron. QE-9, 940, 1973

    Google Scholar 

  18. J.J. Degnan, D.R. Hall, Finite-aperture waveguide-laser resonators, IEEE J. Quantum Electron. QE-9, 901, 1973

    Article  Google Scholar 

  19. J.J. Degnan, Waveguide laser mode patterns in the near and far field, Appl. Opt. 12, 1026, 1973

    Article  Google Scholar 

  20. R.L. Abrams and A. N. Chester, Resonator theory for hollow waveguide lasers, Appl. Opt. 13, 2117, 1974

    Article  Google Scholar 

  21. D. Marcuse, Theory of dielectric optical waveguides, in: Theory of dielectric optical waveguides, Y.H. Pau, ed. New York: Academic Press 1974

    Google Scholar 

  22. K.D. Laakmann, W.H. Steier, Waveguides: Characteristic modes of hollow rectangular dielectric waveguides, Appl. Opt. 15, 1334, 1976

    Article  Google Scholar 

  23. J.J. Degnan, The waveguide laser: a review, Appl. Phys. 11, 1–33, 1976

    Article  Google Scholar 

  24. D.M. Henderson, Waveguide lasers with intracavity electrooptic modulators: misalignment loss, Appl. Opt. 15, 1066, 1976

    Article  Google Scholar 

  25. H. Krammer, Field configurations and propagation constants of modes in hollow rectangular dielectric waveguides, IEEE J. Quantum Electron QE-12, 505, 1976

    Article  Google Scholar 

  26. S. Avrillier and J. Verdonck, Coupling lasses in laser resonators containing a hollow rectangular dielectric waveguide, J. Appl. Phys. 48, 4937, 1977

    Article  Google Scholar 

  27. R.W. Abrams, Waveguide Gas Lasers, in Laser Handbook, vol. 3. Amsterdam: North-Holland 1979, pp. 41–68

    Google Scholar 

  28. P.W. Smith, O.R. Wood II, P.J. Maloney, C.R. Adams, Transversely excited waveguide gas lasers, IEEE J. Quantum Electron. QE-17, 1166, 1981

    Article  Google Scholar 

  29. K.D. Laakmann, Waveguide gas laser with transverse discharge excitation, European Patent Specification EP 0 003 280 Bl, August 1981

    Google Scholar 

  30. J.L. Boulnois, G.O. Agrawal, Mode discrimination and coupling losses in rectangular-waveguide resonators with conventional and phase-conjugate mirrors, J. Opt. Soc. Am 72, 853, 1982

    Article  Google Scholar 

  31. R Gerlach, D. Wei, N.M. Amer, Coupling efficiency of waveguide laser resonators formed by flat mirrors: analysis and experiment, IEEE J. Quantum Electron. QE-20, 948, 1984

    Article  Google Scholar 

  32. C.A. Hill, D.R. Hall, Coupling loss theory of single-mode waveguide resonators, Appl. Opt. 24(9), 1283, 1985

    Article  Google Scholar 

  33. C.A. Hill, D.R. Hall, Waveguide laser resonators with a tilted mirror, IEEE J. Quantum Electron. QE-22, 1078, 1986

    Article  Google Scholar 

  34. D.R. Hall, C.A. Hill, Radiofrequency-Discharge-Excited CO2 lasers, in Handbook of molecular lasers. New York, Basel: Marcel Dekker, Inc. 1987, pp. 165–198

    Google Scholar 

  35. S.J. Wilson, R.M. Jenkins, R.W.J. Devereuz, Hollow-core silica waveguides, IEEE J. Quantum Electron. QE-23, 52, 1987

    Article  Google Scholar 

  36. C.A. Hill, Transverse modes of plane-mirror waveguide resonators, IEEE J. Quantum Electron. 24, 1936, 1988

    Article  Google Scholar 

  37. C.A. Hill, R.M. Jenkins, R.W.J. Devereuz, Transmission of linearly polarized infrared light through curved hollow dielectric waveguides, IEEE J. Quantum Electron. 24, 618, 1988

    Article  Google Scholar 

  38. J. Tulip, Carbon dioxide slab laser, United States Patent 4, 719, 639, January 1988

    Google Scholar 

  39. G. Allcock, A gas discharge structure for an RF excited gas laser, European Patent Application EP 0 283 161 A1, September 1988

    Google Scholar 

  40. H. Opower, High-power ribbon laser, European Patent Application EP 0 305 893 A2, March 1989

    Google Scholar 

  41. P.E. Jackson, H.J. Baker, D.R. Hall, CO2 large-area discharge laser using an unstable-waveguide hybrid, Appl. Phys. Lett. 54, 1950, 1989

    Article  Google Scholar 

  42. C.J. Shackleton, K. M. Abramski, H.J. Baker, D.R. Hall, Lateral and transverse mode properties of CO2 slab waveguides, Opt. Commun. 89, 423, 1989

    Article  Google Scholar 

  43. H. Gross, Calculation of Waveguide Lasers, Internal Report, Carl Zeiss, Oberkochen, Germany, January 1989

    Google Scholar 

  44. P.E. Jackson, D.R. Hall, C.A. Hill, Comparisons of waveguide folding geometries in a CO2 z-fold laser, Appl. Opt. 28, 935, 1989

    Article  Google Scholar 

  45. C.A. Hill, P.E. Jackson, D.R. Hall, Carbon dioxide waveguide lasers with folds and tilted mirrors, Appl. Opt. 29(15), 2240, 1990

    Article  Google Scholar 

  46. J. Nishima, K. Yoshizawa, Development of CO2laser excited by 2.45GHz microwave discharge, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1226, High power gas lasers, 340, 1990

    Google Scholar 

  47. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krüger, H. Weber, High power CO2 wavguide laser of the 1kW category, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1276, CO2 lasers and applications, 18, 1990

    Google Scholar 

  48. H. Opower, High power ribbon laser, United States Patent 4, 939, 738, July 1990

    Google Scholar 

  49. R. Alvarez-Chust, J.J. Jimenez-Lidon, A simplified and more general model for waveguide laser resonators, IEEE Photon. Tech. Lett. 2(1), 24, 1990

    Article  Google Scholar 

  50. K. Janulewicz, P. Szczepanski, Approximate analytical method of gain saturation analyisis of hollow waveguide lasers, Appl. Opt. 30(27), 3818, 1991

    Article  Google Scholar 

  51. J. Nishimae, K. Yoshizawa, M. Taki, Gas laser device, United States Patent 5, 048, 048, September 1991

    Google Scholar 

  52. R. Nowack, H. Opower, K. Wessel, H. Krüger, W. Haas, N. Menzel, Diffusioncooled compact CO2 higher power lasers, Laser und Optoelektronik 3/91, 68. Stuttgart:AT-Fachverlag, 1991

    Google Scholar 

  53. M. Khelkal, F. Herlemont, Determination of effective optical constants of infrared CO2 waveguide laser materials, Appl. Opt. 31(21), 4175, 1992

    Article  Google Scholar 

  54. R.M. Jenkins, R.J. Devereux, Effect of field regeneration on the TEM00 transmission characteristics of a circular-section waveguide, Appl. Opt. 31(24), 5086, 1992

    Article  Google Scholar 

  55. E.F. Yelden, H.J.J. Seguin, C.E. Capjack, S.K. Nikimb, H Reshef; Multichannel laser resonators — an experimental study, Opt. Quantum Electron. 24, 889, 1992

    Article  Google Scholar 

  56. J.L. Hobart, J.M. Yarborough, J. Dallarosa, P. Gardner, RF excited CO2 slab waveguide laser, United States Patent 5, 123, 028, June 1992

    Google Scholar 

  57. W. S. Mefferd, RF excited CO2slab waveguide laser, United States Patent 5, 131, 003, July 1992

    Google Scholar 

  58. J. Dallarosa, P. Gardner, RF excited CO2 slab waveguide laser, United States Patent 5, 131, 004, July 1992

    Google Scholar 

  59. J.M. Yarborough, J.L. Hobart, J. Dallarosa, RF excited CO2 slab waveguide laser, United States Patent 5, 140, 606, August 1992

    Google Scholar 

  60. W.S. Mefferd, RF excited CO2slab waveguide laser, United States Patent 5, 155, 739, October 1992

    Google Scholar 

  61. A.D. Colley, H.J. Baker, D.R. Hau, Planar waveguide, 1-kW cw, carbon dioxide laser excited by a single transverse rf discharge, Appl. Phys. Lett. 61, 136, 1992

    Article  Google Scholar 

  62. M. Khelkhal, F. Herlemont, RF excitation of a flowing gas CO2 waveguide laser, IEEE J. Quantum Electron. QE-29, 818, 1993

    Article  Google Scholar 

  63. C.L. Petersen, D. Eisel, J.J. Brzezinski, H. Gross, Mode and wavelength selectivity in slab-geometry CO2 lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 2206, High power gas and solid state lasers, 91, 1994

    Google Scholar 

  64. D. Eisel, H. Gross, C.L. Petersen, Slab-waveguide CO2 laser, United States Patent 5, 412, 681, May 1995

    Google Scholar 

  65. A. Lapucci, A. Labate, F. Rossetti, S. Mascalchi, Hybrid stable-unstable resonators for diffusion-cooled CO2 slab lasers, Appl. Opt. 35(18), 3185, 1996

    Article  Google Scholar 

  66. Rofin Sinar: slab waveguide CO2 laser DC 015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London

About this chapter

Cite this chapter

Hodgson, N., Weber, H. (1997). Hybrid Resonators. In: Optical Resonators. Springer, London. https://doi.org/10.1007/978-1-4471-3595-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3595-1_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3597-5

  • Online ISBN: 978-1-4471-3595-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics