Influence of Gain on Mode Structure and Loss

  • Norman Hodgson
  • Horst Weber


In the previous discussion of the output power we did not take the mode structure into account. The volume of the beam inside the medium was only characterized by an effective cross sectional area A b resulting in a fill factor γ =A b /A, with A being the cross sectional area of the active medium. The question we want to answer in this Chapter is how the beam cross section has to be defined to get a realistic expression for the output power of a laser resonator. In Part III we defined the mode radius w by using the second intensity moments. A first approximation, therefore, would be to use this mode radius for the definition of the mode cross section A b = πw 2 . For transverse multimode lasers this is a very good approach that provides output powers close to the observed ones.


Fill Factor Output Coupling Diffraction Loss Unstable Resonator Gain Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.24
    H. Statz, C.L. Tang, Problem of mode deformation in optical masers, J. Appl. Phys. 36, 1816, 1965CrossRefGoogle Scholar
  2. 4.25
    H. Kogelnik, On the propagation of gaussian beams of light through lenslike media including those with a loss or gain variation, Appl. Opt. 4, 1562, 1965CrossRefGoogle Scholar
  3. 4.26
    T. Li, J.G. Skinner, Oscillating modes in ruby lasers with nonuniform pumping energy distribution, J. Appl. Phys. 36, 2595, 1965CrossRefGoogle Scholar
  4. 4.27
    A.G. Fox, T. Li, Effects of gain saturation on the oscillating modes of optical masers, IEEE J. Quantum Electron. 2, 774, 1966CrossRefGoogle Scholar
  5. 4.28
    P.J. Warter, K.U. Martinelli, Some effects of nonuniform pumping on the mode structure of solid state lasers, J. Appl. Phys. 37, 2103, 1966CrossRefGoogle Scholar
  6. 4.29
    A.G. Fox, T. Li, Effect of gain saturation on the oscillating modes of optical masers, IEEE J. Quantum Electron. 2, 774, 1966CrossRefGoogle Scholar
  7. 4.30
    L. Casperson, A. Yariv, The Gaussian mode in optical resonators with a radial gain profile, Appl. Phys. Lett. 12, 355, 1968CrossRefGoogle Scholar
  8. 4.31
    L. Casperson, A Yariv, Gain and dispersion focusing in an high gain laser, Appl. Opt. 11, 462, 1972CrossRefGoogle Scholar
  9. 4.32
    G.J. Ernst, W.J. Witteman, Mode structure of active resonators, IEEE J. Quantum Electron. 9, 911, 1973CrossRefGoogle Scholar
  10. 4.33
    U. Ganiel, Y. Silberberg, Stability of optical resonators with an active medium, Appl. Opt. 14, 306, 1975CrossRefGoogle Scholar
  11. 4.34
    E.A. Sziklas, A.E. Siegman, Mode calculations in unstable resonators with flowing saturable gain, Appl. Opt. 14, 1874, 1975CrossRefGoogle Scholar
  12. 4.35
    G.T. Moore, R.J. McCarthy, Theory of modes in a loaded strip confocal unstable resonator, J. Opt. Soc. Am. 67, 228, 1977CrossRefGoogle Scholar
  13. 4.36
    A. Hardy, Gaussian modes of resonators containing saturable gain medium, Appl. Phys. 19, 3830, 1980Google Scholar
  14. 4.37
    R. Hauck, F. Hollinger, H. Weber, Chaotic and Periodic Emission of high power solid state lasers, Opt. Commun. 47, 2, 1983CrossRefGoogle Scholar
  15. 4.38
    F.D. Feick, J.R. Oldenettel, Gain effects on laser mode formation, J. Opt. Soc. Am. A 1, 1097, 1984CrossRefGoogle Scholar
  16. 4.39
    N. Hodgson, Optical resonators for high power lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol 1021, High power solid state lasers, 89, 1988Google Scholar
  17. 4.40
    W.P. Risk, Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses, J. Opt. Soc. Am B 5, 1412, 1988CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 1997

Authors and Affiliations

  • Norman Hodgson
    • 1
  • Horst Weber
    • 2
  1. 1.Humphrey InstrumentsCarl Zeiss Inc.San LeandroUSA
  2. 2.Optisches InstitutTechnische Universität BerlinBerlinGermany

Personalised recommendations