Skip to main content

Output Power of Laser Resonators

  • Chapter
Optical Resonators
  • 840 Accesses

Abstract

The differential equations (9.35) and (9.56) describing the amplification of the intensity inside the active medium are now used to derive the output power of stable resonators. In the resonator model used (Fig. 10.1) it is assumed that both the forward travelling beam with intensity I +(z) and the backward traveling beam with intensity I -(z) cover the same area of the active medium. The complete overlap of the two counterpropagating beams is characteristic for stable resonators. During a round trip the intensity is decreased due to diffraction losses (loss factors V 1 -V 4 ), scattering, and absorption inside the medium (loss factor V s ), and by output coupling. In steady state operation, these losses are compensated by the amplification process characterized by the small-signal gain coefficient g 0 The next assumption we make is that no spatial hole burning is present meaning that at any plane inside the medium the intensity I(z) is given by the sum of the two intensities I +(z) and I - (z). This is a reasonable approach for most lasers since the effect of spatial hole burning on the output power is smoothed out by atomic motion (gas lasers), energy migration, or axial multimode operation (solid state lasers). Furthermore, the mode is assumed to exhibit a flat-top intensity profile. The incorporation of the real mode structure will be discussed in Chapter 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.W. Rigrod, Gain saturation and output power of optical masers, J. Appl. Phys. 34, 2602, 1963

    Article  Google Scholar 

  2. 4.5 L.M. Frantz, J.S. Nodvik, Theory of pulse propagation in a laser amplifier, J. Appl. Phys. 34, 2346

    Google Scholar 

  3. 4.6 A. Yariv, Energy and power considerations in injection and optically pumped lasers, Proc. IEEE, 1723, 1963

    Google Scholar 

  4. W.C. Marlow, Approximate lasing condition, J. Appl. Phys. 41, 4019, 1970

    Article  Google Scholar 

  5. Y.A. Anan’ev, V.E. Sherstobitov, O.A. Shorokov, Calculation of the efficiency of a laser exhibiting large radiation losses, Sov. J. Quantum Electron. 1, 65, 1971

    Article  Google Scholar 

  6. Y.A. Anan’ev, L.V. Koval’chuk, V.P. Trusov, V.E. Sherstobitov, Method for calculating the efficiency of lasers with unstable resonators, Sov. J. Quantum Electron. 4, 659, 1974

    Article  Google Scholar 

  7. P.W. Miloni, Criteria for the thin-sheet approximation, Appl. Opt. 16, 2794–2795, 1977

    Article  Google Scholar 

  8. W. Rigrod, Homogeneously broadened cw lasers with uniform distributed loss, IEEE J. Quantum Electron. 14, 377, 1978

    Article  Google Scholar 

  9. D. Eimerl, Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers, J. Appl. Phys. 51, 3008, 1980

    Article  Google Scholar 

  10. G.M. Schindler, Optimum output efficiency of homogeneously broadened lasers with constant loss, IEEE J Quantum Electron. 16, 546, 1980

    Article  Google Scholar 

  11. R.S. Galeev, S.I. Krasnov, Approximate method for calculation of output power of unstable telescopic resonators, Sov. J. Quantum Electron. 12, 802, 1982

    Article  Google Scholar 

  12. O. Svelto, Principles of Lasers, Plenum Press, 1982

    Google Scholar 

  13. Lui-teng-Lin, Analysis of energy extraction efficiency of unstable resonators, Final Report, Naval Research Laboratory, Washington DC, 1984

    Google Scholar 

  14. L.W. Casperson, Power characteristics of high magnification semiconductor lasers, Opt. Quantum Electron. 18, 155, 1986

    Article  Google Scholar 

  15. N. Hodgson, Optical resonators for high power lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1021, High power solid state lasers, 89, 1988

    Google Scholar 

  16. J. Eicher, N. Hodgson, Output power of slab and rod lasers, Proceedings of the Society of Photo-Optical Instrumentation Engineers vol. 1021, High power solid state lasers, 147, 1988

    Google Scholar 

  17. J. Eicher, N. Hodgson, H. Weber, Output power and efficiencies of slab laser systems, J. Appl. Phys. 66, 4608, 1989

    Article  Google Scholar 

  18. J.M. Eggleston, L.M. Frantz, H Injeyan, Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers, IEEE J. Quantum Electron. QE-25, 1855, 1989

    Article  Google Scholar 

  19. W. Demtröder, Laserspektroskopie, 2nd edition. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer Verlag 1991, pp. 41–65

    Google Scholar 

  20. T. Day, E.K. Gustafson, R.L. Byer, Sub-Hertz frequency stabilization of two diode laser-pumped Nd.YAG laser locked to a Fabry Perot interferometer, IEEE J. Quantum Electron. 28(4), 1106, 1992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London

About this chapter

Cite this chapter

Hodgson, N., Weber, H. (1997). Output Power of Laser Resonators. In: Optical Resonators. Springer, London. https://doi.org/10.1007/978-1-4471-3595-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3595-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3597-5

  • Online ISBN: 978-1-4471-3595-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics