Skip to main content

Measuring the ‘Rubber Rhomboid’ effect

  • Conference paper
AI and Cognitive Science ’90

Part of the book series: Workshops in Computing ((WORKSHOPS COMP.))

Abstract

The ‘Rubber Rhomboid’ effect is an illusion where a rigid skeleton parallelepiped is rotated and appears to undergo rubbery deformation [1]. This paper reports the first attempt to map the effect systematically. Three subjects assessed the level of deformation of computer generated rotating parallelepipeds. The main finding was that objects containing equal angles at a vertex were more stable across all orientations, especially when the equal angles were 90°. The findings are discussed in the context of computational accounts of human vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowie R. Rubber Rhomboids: Nonrigid interpretation of a rigid structure moving. Perception and Psychophysics 1987; 42: 407–408

    Article  Google Scholar 

  2. Roberts RG. Machine perception of 3-Dimensional solids. In: Tippett JT, Berkowitz DA, Clapp LC, Koester C J and Vandenburg A (eds) Optical and Electro-optical Information Processing. MIT Press Cambridge, Mass., 1965

    Google Scholar 

  3. Guzman A. Decomposition of a visual scene into three-dimensional bodies. In IAFIPS Conference Proceedings 33. Thompson, Washington, DC 1968, pp 291304

    Google Scholar 

  4. Huffman D. Impossible objects as nonsense sentences. In: Meltzer B and Michie D (eds) Machine Intelligence (Vol. 6). Edinburgh University Press Edinburgh, 1971

    Google Scholar 

  5. Clowes M. On seeing things. Artificial Intelligence 1971; 2: 79–116

    Article  Google Scholar 

  6. Michie DM. On not seeing things. In On Machine Intelligence. John Wiley New York, 1974

    Google Scholar 

  7. Barrow HG and Tenebaum JM. Recovering intrinsic scene characteristics from images. In: Hanson AR and Riseman E M (eds) Computer vision systems. Academic Press New York, 1978

    Google Scholar 

  8. Horn BKP. Determining lightness from an image. Computer Graphics and Image Processing 1974; 3: 277–299

    Article  Google Scholar 

  9. Horn BKP. Obtaining shape from shading information. In: Winston PH (ed) The psychology of Computer vision. McGraw-Hill London, 1975

    Google Scholar 

  10. Horn BKP. Image intensity understanding. Artificial Intelligence 1977; 8: 201–231

    Article  MATH  Google Scholar 

  11. Man D. Early processing of visual information. Philosophical Transactions Royal Society London 1976; B 275: 483–524

    Article  Google Scholar 

  12. Marr D. Analysis of occluding contour. Proceedings of the Royal Society London 1977; B 197: 441–475

    Article  Google Scholar 

  13. Mari D. Artificial intelligence-a personal view. Artificial Intelligence 1977; 9: 37–48

    Article  Google Scholar 

  14. Mari D. Representing visual information-a computational approach. In: Hanson AR and Riseman EM (eds) Computer vision systems. Academic press New York, 1978

    Google Scholar 

  15. Marr D. Vision. WH Freeman San Francisco, 1982

    Google Scholar 

  16. Ullman S. The Interpretation of Visual Motion. MIT Press Cambridge, Mass., 1979

    Google Scholar 

  17. Longuet-Higgins HC and Prazdny K. The interpretation of a moving retinal image. Proceedings of the Royal Society London 1980; B 208: 385–397

    Article  Google Scholar 

  18. Longuet-Higgins HC. A computer algorithm for reconstructing a scene from two projections. Nature 1981; 293: 433–435

    Article  Google Scholar 

  19. Cowie R. The alternatives allowed by a rectangular postulate, and a pragmatic approach to interpreting motion. In: Hallam J and Mellish C (eds) Advances in Artificial Intelligence.Wiley Chichester, 1987

    Google Scholar 

  20. Longuet-Higgins HC. The visual ambiguity of a moving plane. Proceedings of the Royal Society London 1984; B 223: 165–175

    Article  Google Scholar 

  21. Scott GL. Local and Global Processing of Moving Images. Pitman London, 1988

    Google Scholar 

  22. Subbarao M. Interpretation of Visual Motion: a computational study. Pitman London, 1988

    Google Scholar 

  23. Poggio T, Torre V and Koch C. Computational Vision and regularization theory. Nature 1985; 317: 314–319

    Article  Google Scholar 

  24. Ames A. Visual Perception and the Rotating Trapezoid Window. Psychological Monographs 1951; 65: whole number 324

    Google Scholar 

  25. Cowie RID. Rotating trapezia which appear transparent and luminous during apparent reversals. Perception 1989; 18: 173–180

    Article  Google Scholar 

  26. Wallach H and O Connell DN. The kinetic depth effect. Journal of Experimental Psychology 1953; 45: 205–217

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clements, D., Cowie, R. (1991). Measuring the ‘Rubber Rhomboid’ effect. In: McTear, M.F., Creaney, N. (eds) AI and Cognitive Science ’90. Workshops in Computing. Springer, London. https://doi.org/10.1007/978-1-4471-3542-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3542-5_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19653-2

  • Online ISBN: 978-1-4471-3542-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics