Skip to main content

Understanding the Evolution of Insect Life-Cycles: The Role of Genetic Analysis

  • Conference paper
Insect Life Cycles

Abstract

Phenotypic variation is ubiquitous in natural populations, both within and between populations of the same species. Variation in body size is an obvious example of phenotypic variation and in some insects can reach extreme limits, intrapopulational differences in weight being as great as six-fold in the coleop-teran Asemum striatum (Andersen and Nilssen 1983), and five-fold in female Aedes sierrensis (Hawley 1985). Variation in phenotype within a population has caused considerable taxonomic confusion. In many insect species, for example, populations may comprise two distinct morphs, winged and wingless, the two morphs also frequently showing other substantial morphological differences. Such variation has led many taxonomists to classify these morphs as separate species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen J, Nüssen AC (1983) Intrapopulation size variation of free-living and tree-boring coleoptera. Can Entomol 115:1453–1464

    Article  Google Scholar 

  • Bellinger RG, Pienkowski RL (1987) Developmental polymorphism in the red-legged grasshopper, Melanoplus femurrubrum (DeGeer) (Orthoptera: Acrididae). Environ Entomol 16: 120–125

    Google Scholar 

  • Blakley N, Goodner SR (1978). Size-dependent timing of metamorphosis in milkweed bugs (Oncopeltus) and its life history implications. Biol Bull 155: 499–510

    Article  Google Scholar 

  • Bryant E (1977) Morphometric adaptation of the house fly, Musca domestica, in the United States. Evolution 31: 580–596

    Article  Google Scholar 

  • Bryant E, Turner C (1978) Comparative morphometric adaptation of the housefly and the face fly in the United States. Evolution 32: 759–770

    Article  Google Scholar 

  • Butlin RK, Hewitt GM (1986) Heritability estimates for characters under sexual selection in the grasshopper, Chorthippus brunneus. Anim Behav 34: 1256–1261

    Article  Google Scholar 

  • Cade W (1979) The evolution of alternative male reproduction strategies in field crickets. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp 343–379

    Google Scholar 

  • Cade W (1981) Alternative male strategies: genetic differences in crickets. Science 212: 563–564

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1988) The heritability of fitness. In: Bradbury JW, Andersson HB (eds) Sexual selection: testing the alternatives. Wiley, New York, pp 21–40 (Dahlem Workshop)

    Google Scholar 

  • Clarke JM, Maynard Smith J, Sondhi KC (1961). Asymmetrical response to selection for rate of development in Drosophila subobscura. Genet Res 2: 70–81

    Article  Google Scholar 

  • Cohen D (1970) A theoretical model for the optimal timing of diapause. Am Nat 104: 389–400

    Article  Google Scholar 

  • Dawson PS (1975) Directional versus stabilizing selection for development time in natural and laboratory populations of flour beetles. Genetics 80: 773–783

    PubMed  CAS  Google Scholar 

  • Derr J (1980) The nature of variation in life history characters of Dysdercus bimaculatus, a colonizing species. Evolution 34: 548–557

    Article  Google Scholar 

  • Dickerson GE (1955) Genetic slippage in response to selection for multiple objectives. Cold Spring Harb Symp Quant Biol 20: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Dingle H, Brown C, Hegmann JP (1977) The nature of genetic variance influencing photoperiodic diapause in a migrant insect, Oncopeltus fasciatus. Am Nat 111: 1047–1059

    Article  Google Scholar 

  • Dingle H, Evans KE, Palmer JO (1988) Responses to selection among life history traits in a nonmigratory population of milkweed bugs (Oncopeltus fasciatus). Evolution 42: 79–92

    Article  Google Scholar 

  • Englert DC, Bell AE (1970) Selection for time of pupation in Tribolium casteneum. Genetics 64: 541

    PubMed  CAS  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London New York

    Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection. Dover Publications, New York

    Google Scholar 

  • Gilbert N (1984) Control of fecundity in Pieris rapae. I. The problem. J Anim Ecol 53: 581–588

    Article  Google Scholar 

  • Gillespie JH, Turelli M (1989) Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121: 124–138

    Google Scholar 

  • Groeters FR, Dingle H (1987) Genetic and maternal influences on fife history plasticity in response to photoperiod by milkweed bugs (Oncopeltus fasciatus). Am Nat 129: 332–346

    Article  Google Scholar 

  • Gross M (1982) Sneakers, satellites and parentals: polymorphic mating strategies in North American sunfishes. Z Tierpsychol 60: 1–26.

    Google Scholar 

  • Halliburton R, Gall G (1981). Disruptive selection and assertive mating in Tribolium casteneum. Evolution 35: 829–843

    Article  Google Scholar 

  • Hawley WA (1985) The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J Anim Ecol 54: 955–964

    Article  Google Scholar 

  • Hegmann J, Dingle H (1982) Phenotypic and genotypic covariance structure in milkweed bug life history traits. In: Dingle H, Hegmann J (eds) Evolution and genetics of life histories. Springer, Berlin Heidelberg New York, pp 177–188

    Chapter  Google Scholar 

  • Hillesheim E (1984) Heritability of physiological characters in the Cape honeybee, Apis mellifera capensis. Apidologie 15: 271–273

    Google Scholar 

  • Imura O (1980) The color variation in larvae of Ephestria kuehniella (Lepidoptera, Phycitdae). I. On the inheritance of color variation. Konchu 48: 248–258

    Google Scholar 

  • Jago ND (1973) The genesis and nature of tropical forest and savanna grasshopper faunas, with special reference to Africa. In: Meggers BJ, Ayensu ES, Duckworth D (eds.) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington, DC, pp 187–196

    Google Scholar 

  • Lounibos LP (1979) Temporal and spatial distribution, growth and predatory behaviour of Toxorhynchites brevipalpis (Diptera: Culicidae) on the Kenya coast. J Anim Ecol 48: 213–236

    Article  Google Scholar 

  • Morris RF (1971) Observed and simulated changes in genetic quality in natural populations of Hyphantria cunea. Can Entomol 103: 893–906

    Article  Google Scholar 

  • Morris R, Fulton W (1970) Heritability of diapause intensity in Hyphantria cunea and correlated fitness responses. Can Entomol 102: 927–938

    Article  Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59: 181–197

    Article  PubMed  Google Scholar 

  • Nijhout HF (1975) A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biol Bull 149: 214–225

    Article  PubMed  CAS  Google Scholar 

  • Nijhout HF (1979) Stretch-induced moulting in Oncopeltus fasciatus. J Insect Physiol 25: 277–281

    Article  Google Scholar 

  • Orozco F (1976) A dynamic study of genotype environment interaction with egg laying of Tribolium casteneum. Heredity 37: 157–171

    Article  PubMed  CAS  Google Scholar 

  • Palmer JO, Dingle H (1986) Direct and correlated responses to selection among life history traits in milkweed bugs (Oncopeltus fasciatus). Evolution 40: 767–777

    Article  Google Scholar 

  • Prout T (1962) The effects of stabilizing selection on the time of development in Drosophila melanogaster. Genet Res 3: 364–382

    Article  Google Scholar 

  • Riddiford LM (1985) Hormone action at the cellular level. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York, pp 37–83

    Google Scholar 

  • Rinder TE, Collins AM, Brown MA (1983) Heritabilities and correlations of honeybee response to Nosema apis longevity and alarm response to isopentylacetate. Apidologie 14: 79–86

    Article  Google Scholar 

  • Robertson FW (1957) Studies in quantitative inheritance. XI. Genetic and environmental correlation between body size and egg production in Drosophila melanogaster. J Genet 55: 428–443

    Article  Google Scholar 

  • Roff DA (1981) Reproductive uncertainty and the evolution of iteroparity: why don’t flatfish put all their eggs in one basket? Can J Fish Aquat Sci 38: 968–977

    Article  Google Scholar 

  • Roff DA (1984) On the cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia 63: 30–37

    Article  Google Scholar 

  • Roff DA (1986a) The evolution of wing dimorphism in insects. Evolution 40: 1009–1020

    Article  Google Scholar 

  • Roff DA (1986b) The evolution of wing polymorphism and its impact on life cycle adaptation in insects. In: Taylor F, Karban R (eds) The evolution of insect life cycles. Springer, Berlin Heidelberg New York, pp 209–221

    Google Scholar 

  • Roff DA (1986c) The genetic basis of wing dimorphism in the sand cricket, Gryllusfirmus, and its relevance to the evolution of wing dimorphisms in insects. Heredity 57: 221–231

    Article  Google Scholar 

  • Roff DA (1989) Exaptation and the evolution of dealation in insects. J Evol Biol 2: 109–123

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (1990). Wing dimorphisms and the evolution of migratory polymorphisms among the insecta. Am Zool (in press)

    Google Scholar 

  • Roff DA, Mousseau TA (1987) Quantitative genetics and fitness: lessons from Drosophila. Heredity 58: 103–118

    Article  PubMed  Google Scholar 

  • Rose MR (1982) Antagonistic pleiotropy, dominance and genetic variation. Heredity 48: 63–78

    Article  Google Scholar 

  • Rose MR (1983) Theories of life-history evolution. Am Zool 23: 15–23.

    Google Scholar 

  • Rose MR (1985) Life history evolution with antagonistic pleiotropy and overlapping generations. Theor Popul Biol 28: 342–358

    Article  Google Scholar 

  • Rose MR, Charlesworth B (1981a) Genetics of life history in Drosophila melanogaster. I. Sib analysis of adult females. Genetics 97: 173–186

    PubMed  CAS  Google Scholar 

  • Rose MR, Charlesworth B (1981b) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97: 187–196

    PubMed  CAS  Google Scholar 

  • Sang JH (1962) Selection for rate of larval development using Drosophila melanogaster cultured axenically on deficient diets. Genet Res 3: 70–99

    Article  Google Scholar 

  • Sang JH, Clayton GA (1957) Selection for larval development time in Drosophila. J Hered 48: 265–270

    Google Scholar 

  • Service PM, Rose MR (1985) Genetic covariation among life history components: the effect of novel environments. Evolution 39: 943–945

    Article  Google Scholar 

  • Sheridan AK, Frankham R, Jones LP, Rathie KA, Barker JSF (1968) Partitioning of variance and estimation of genetic parameters for various bristle number characters of Drosophila melanogaster. Theor Appl Genet 38: 179–187

    Article  Google Scholar 

  • Slama K (1985) Pharmacology of insect juvenile hormones. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York, pp 357–394

    Google Scholar 

  • Southwood TRE (1961) A hormonal theory of the mechanism of wing polymorphism in heteroptera. Proc R Entomol Soc London (A) 36: 63–66

    Google Scholar 

  • Stein W (1977) Die Beziehung zwischen Biotop-alter und Auftreten der Kurzflügeligkeit bei Populationen dimorpher Rüsselkäfer-arten (Col., Curculionidae). Z Angew Entomol 83: 37–39

    Article  Google Scholar 

  • Tanaka Y (1987a) Polygenic analyses of morphological characters in Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae). I. Heritability estimates. Appl Entomol Zool 22: 125–132

    Google Scholar 

  • Tanaka Y (1987b) Polygenic analyses of morphological characters in Pieris rapae crucivora (Pieridae: Lepidoptera). II. Phenotypic, genetic and environmental correlations. Jpn J Genet 62: 59–67

    Article  Google Scholar 

  • Tantawy AO, El-Helw MR (1966) Studies on natural populations of Drosophila. V. Correlated response to selection in Drosophila melanogaster. Genetics 53: 97–110

    PubMed  CAS  Google Scholar 

  • Tantawy AO, El-Helw MR (1970) Studies on natural populations of Drosophila. IX. Some fitness components and their heritabilities in natural and mutant populations of Drosophila melanogaster. Genetics 64: 79–91

    PubMed  CAS  Google Scholar 

  • Tantawy AO, Rakha FA (1964) Studies on natural populations of Drosophila. IV. Genetic variances of and correlations between four characters in D. melanogaster and D. simulans. Genetics 50:1349–1355

    PubMed  CAS  Google Scholar 

  • Wallace HR (1953) Notes on the biology of Coranus subapterus de Geer (Hemiptera: Reduviidae). Proc R Entomol Soc London (A) 28: 100–110

    Google Scholar 

  • Wigglesworth VB (1934) The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and “metamorphosis”. Q J Microsc Sci 77: 191–222.

    Google Scholar 

  • Wigglesworth VB (1961) Insect polymorphism in a tentative synthesis. Symp R Ent Soc London 1: 103–113

    Google Scholar 

  • Woodring JP (1983) Control of moulting in the house cricket, Acheta domesticus. J Insect Physiol 29: 461–464

    Article  CAS  Google Scholar 

  • Zawilski A (1972) Heritability of four morphological characters in honeybees (Apis mellifica L.). Genet Pol 13: 41–49

    Google Scholar 

  • Zera AJ, Tiebel KC (1989) Differences in juvenile hormone esterase activity between presumptive macropterous and brachypterous Gryllus rubens: implications for the hormonal control of wing polymorphism. J Insect Physiol 35: 7–18

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this paper

Cite this paper

Roff, D.A. (1990). Understanding the Evolution of Insect Life-Cycles: The Role of Genetic Analysis. In: Gilbert, F. (eds) Insect Life Cycles. Springer, London. https://doi.org/10.1007/978-1-4471-3464-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3464-0_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3466-4

  • Online ISBN: 978-1-4471-3464-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics