Skip to main content

Mechanisms of Killing of Bacteria by 4-Quinolones

  • Chapter
The 4-Quinolones: Anti Bacterial Agents in Vitro

Part of the book series: Springer Series in Applied Biology ((SSAPPL.BIOLOGY))

Abstract

The 4-quinolones are a major new class of potent orally-absorbed antibacterial agents. These drugs, derivatives of the earlier marketed drugs nalidixic acid and oxolinic acid, include norfloxacin, ciprofloxacin, ofloxacin, fleroxacin, lomefloxacin, temafloxacin, spafloxacin, and others. A favorable property of the 4-quinolones is rapid killing of bacteria. Mechanisms of killing, however, are not well understood (Smith and Lewin 1988; Wolfson et al. 1989d), despite considerable knowledge of the effects of these drugs on the intracellular target, the enzyme DNA gyrase, and on cellular metabolic processes (Cozzarelli 1980; Geliert 1981; Drlica 1984; Wang 1987). Information on mechanisms of killing of bacteria by 4-quinolones will be reviewed, discussing definitions and methodology, the killing phenomenon, studies of mechanisms, differences among 4-quinolones, and bacterial mutants exhibiting reduced killing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron P, Michelot D, Masson JM, Labia R (1984) Comparison of three 125I-radiolabelled penicillins in PBP studies. Drag Exptl Clin Res 10:1–4

    CAS  Google Scholar 

  • Begg KJ, Donachie WD (1985) Cell shape and division in Escherichia coli: experiments with shape and division mutants. J Bacteriol 163:615–622

    PubMed  CAS  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet ii:497–500

    Article  Google Scholar 

  • Botta GA, Park JT (1981) Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol 145:333–340

    PubMed  CAS  Google Scholar 

  • Chalkley U, Koornhof HJ (1985) Antimicrobial activity of ciprofloxacin against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus determined by the killing curve method: antibiotic comparisons and synergistic interactions. Antimicrob Agents Chemother 28:331–342

    PubMed  CAS  Google Scholar 

  • Chaudhury AM, Smith GR (1985) Role of Escherichia coli RecBC enzyme in SOS induction. Mol General Genetics 201:525–528

    Article  CAS  Google Scholar 

  • Chow RT, Dougherty TJ, Fraimow HS, Bellin EY, Miller MH (1988) Association between early inhibition of DNA synthesis and the MICs and MBCs of carboxyquinolone antimicrobial agents for wild-type and mutant [gyrA nfxB (ompF) acrA] Escherichia coli K-12. Antimicrob Agents Chemother 32:1113–1118

    PubMed  CAS  Google Scholar 

  • Cook TM, Deitz WH, Goss WA (1966) Mechanism of action of nalidixic acid on Escherichia coli. IV. Effects on the stability of cellular constituents. J Bacteriol 91:774–779

    PubMed  CAS  Google Scholar 

  • Courtright JB, Turowski DA, Sonstein SA (1988) Alteration of bacterial DNA structure, gene expression, and plasmid encoded antibiotic resistance following exposure to enoxacin. J Antimicrob Chemother 21(Suppl B):1–18

    Article  PubMed  CAS  Google Scholar 

  • Cozzarelli NR (1980) DNA gyrase and supercoiling of DNA. Science 207:953–960

    Article  PubMed  CAS  Google Scholar 

  • Crumplin GC, Smith JT (1975) Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother 8:251–261

    PubMed  CAS  Google Scholar 

  • Crumplin GC, Smith JT (1976) Nalidixic acid and bacterial chromosome replication. Nature 260:643–645

    Article  PubMed  CAS  Google Scholar 

  • Crumplin GC, Kenwright M, Hirst T (1984) Investigation into the mechanism of action of the antibacterial agent norfloxacin. J Antimicrob Chemother 13(Suppl B):9–23

    PubMed  CAS  Google Scholar 

  • Deitz WH, Cook TM, Goss WA (1966) Mechanism of action of nalidixic acid on Escherichia coli. III. Conditions required for lethality. J Bacteriol 91:768–773

    PubMed  CAS  Google Scholar 

  • Diver JM, Wise R (1986) Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. J Antimicrob Chemother 18(Suppl D):31–41

    PubMed  CAS  Google Scholar 

  • Donachie W, Robinson A (1987) Cell division: parameter values and the process. In: Neidhardt F (ed), Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington, DC, pp 1578–1593

    Google Scholar 

  • Donachie WD, Begg JK, Sullivan NF (1984) Morphogenes of Escherichia coli. In: Losick R, Shapiro L (ed), Microbial development, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 27–62

    Google Scholar 

  • Dougherty TJ, Saukkonen JJ (1985) Membrane permeability changes associated with DNA gyrase inhibitors in Escherichia coli. Antimicrob Agents Chemother 28:200–206

    PubMed  CAS  Google Scholar 

  • Drlica K (1984) Biology of bacterial DNA topoisomerases. Microbiol Rev 48:273–289

    PubMed  CAS  Google Scholar 

  • Drlica K, Franco RJ (1988) Inhibitors of DNA topoisomerases. Biochemistry 27:2253–2259

    Article  PubMed  CAS  Google Scholar 

  • Eagle H, Musselman AD (1948) The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J Exp Med 88:99–131

    Article  PubMed  CAS  Google Scholar 

  • Elliot TSJ, Shelton A, Greenwood D (1987) The response of Escherichia coli to ciprofloxacin and norfloxacin. J Med Microbiol 23:83–88

    Article  Google Scholar 

  • Garlando F, Rietiker S, Tauber MG, Repp M, Meier B, Luthy R (1987) Single-dose ciprofloxacin at 100 versus 250 mg for treatment of uncomplicated urinary tract infections in women. Antimicrob Agents Chemother 31:354–356

    PubMed  CAS  Google Scholar 

  • Geliert M (1981) DNA topoisomerases. Ann Rev Biochem 50:879–910

    Article  Google Scholar 

  • Goss W, Deitz WH, Cook TM (1964) Mechanism of action of nalidixic acid on Escherichia coli. J Bacteriol 88:1112–1118

    PubMed  CAS  Google Scholar 

  • Gottesman S (1984) Bacterial regulation: global regulatory networks. Annu Rev Genetics 18:415–441

    Article  CAS  Google Scholar 

  • Greenwood D (1985) Phenotypic resistance to antimicrobial agents. J Antimicrob Chemother 15:653–658 (leading article)

    Article  PubMed  CAS  Google Scholar 

  • Gudas LJ, Pardee AB (1976) DNA synthesis inhibition and the induction of protein X in Escherichia coli. J Molec Biol 101:459–477

    Article  PubMed  CAS  Google Scholar 

  • Handwerger S, Tomasz A (1985) Antibiotic tolerance among clinical isolates of bacteria. Rev Infect Dis 7:368–386

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Messer W, Schwarz U (1972) Regulation of polar cap formation in the life cycle of Escherichia coli J Supramolecular Structure 1:29–37

    Article  CAS  Google Scholar 

  • Holzhoffer S, Sussmuth R, Haag R (1985) Oscillating tolerance in synchronized cultures of Staphylococcus aureus. Antimicrob Agents Chemother 28:456–457

    PubMed  CAS  Google Scholar 

  • Lewin CS, Smith JT (1987) Ciprofloxacin does not exhibit mechanism B against Staphylococcus albus. J Pharmacy Pharmacology 39:21P

    Google Scholar 

  • Lewin CS, Smith JT (1988a) Bactericidal mechanisms of ofloxacin. J Antimicrob Chemother 22(Suppl C):1–8

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Smith JT (1988b) DNA breakdown and its significance. 28th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Los Angeles, California, Abstract #541

    Google Scholar 

  • Lewin CS, Smith JT (1989a) Bactericidal activity of ciprofloxacin against Staphylococcus aureus. J Antimicrob Chemother 24:77–78 Getter)

    Article  Google Scholar 

  • Lewin CS, Smith JT (1989b) Loss of ciprofloxacin’s second killing action by mutation. 29th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Houston, Texas, Abstract #142

    Google Scholar 

  • Lewin CS, Smith JT (1989c) DNA breakdown by the 4-quinolones and its significance. J Med Microbiol, in press

    Google Scholar 

  • Lewin CS, Howard BMA, Ratcliffe NT, Smith JT (1989a) 4-Quinolones and the SOS response. J Med Microbiol 29:139–144

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Morrissey I, Smith JT (1989b) Role of oxygen in bactericidal action of the 4-quinolones. Rev Infect Dis 11(Suppl 5):S913–S914 (extended abstract)

    Google Scholar 

  • Lutkenhaus JF (1983) Coupling of DNA replication and cell division: sulB is an allele of ftsZ. J Bacteriol 154:1339–1346

    PubMed  CAS  Google Scholar 

  • Mathison GE (1968) Kinetics of death induced by penicillin and chloramphenicol in synchronous cultures of Escherichia coli. Nature 219:405–407

    Article  PubMed  CAS  Google Scholar 

  • McDaniel LS, Rogers LH, Hill WE. Survival of recombination-deficient mutants of Escherichia coli during incubation with nalidixic acid. J Bacteriol 134:1195–1198

    Google Scholar 

  • Menzel R, Geliert M (1983) Regulation of the genes of E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105–113

    Article  PubMed  CAS  Google Scholar 

  • Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–77

    PubMed  CAS  Google Scholar 

  • Moyed HS, Broderick SH (1986) Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 166:399–403

    PubMed  CAS  Google Scholar 

  • Phillips I, Culebras E, Moreno F, Baquero F (1987) Induction of the SOS response by new 4-quinolones. J Antimicrob Chemother 20:631–638

    Article  PubMed  CAS  Google Scholar 

  • Piddock LTV, Wise R (1987) Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents. FEMS Microbiol Lett 41:289–294

    Article  CAS  Google Scholar 

  • Ramareddy G, Reiter H (1969) Specific loss of newly replicated DNA in nalidixic acid-treated Bacillus subtilis 168. J Bacteriol 100:724–729

    PubMed  CAS  Google Scholar 

  • Ratcliffe NT, Smith JT (1984) The mechanism of reduced activity of 4-quinolone agents in urine. In: Adam D, Stille W, Ruckdeschel G, Knothe H, Lode H, Eikenberg H-V (eds) Gyrase Hammer, Forschritte der antimikrobiellen und antineoplastischen Chemotherapie FAC 3–5, Futuramed Verlage, Munchen, pp 563–569

    Google Scholar 

  • Ratcliffe NT, Smith JT (1985) Norfloxacin has a novel bactericidal mechanism unrelated to that of other 4-quinolones. J Pharmacy Pharmacology 37:92P

    Article  Google Scholar 

  • Sabath LD, Wheeler N, Laverdiere M, Blazevic D, Wilkinson BJ (1979) A new type of pencillin resistance in Staphylococcus aureus. Lancet i:443–447

    Google Scholar 

  • Sato K, Inoue Y, Fujii T, Aoyama H, Mistuhashi S (1986) Antibacterial activity of ofloxacin and its mode of action. Infection 14 (Suppl 4):S226–S230

    Article  PubMed  CAS  Google Scholar 

  • Scherrer R, Moyed HS (1988) Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. J Bacteriol 170:3321–3326

    PubMed  CAS  Google Scholar 

  • Sherris JC (1986) Problems in in vitro determination of antibiotic tolerance in clinical isolates. Antimicrob Agents Chemother 30:633–637

    PubMed  CAS  Google Scholar 

  • Smith JT (1984) Awakening the slumbering potential of the 4-quinolone antibacterials. Pharmaceutical J 233:299–305

    CAS  Google Scholar 

  • Smith JT, Lewin CS (1988) Chemistry and mechanisms of action of the quinolone antibacterials. In: Andriole VT (ed) The quinolones, Academic Press, London, England, pp 23–82

    Google Scholar 

  • Spratt BG (1977) Properties of penicillin-binding proteins of Escherichia coli K-12. Eur J Biochem 72:341–352

    Article  PubMed  CAS  Google Scholar 

  • Stevens PJE (1980) Bactericidal effect against Escherichia coli of nalidixic acid and four structurally related compounds. J Antimicrob Chemother 6:535–542

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen E, Schwartz J (1987) Penicillin-binding protein 7 and its relationship to lysis of nongrowing Escherichia coli. J Bacteriol 169:4912–4915

    PubMed  CAS  Google Scholar 

  • Tuomanen E, Durack DT, Tomasz A (1986) Antibiotic tolerance among clinical isolates of bacteria. Antimicrob Agents Chemother 30:521–527

    PubMed  CAS  Google Scholar 

  • Vazquez-Ramos JM, Mandelstam J (1981) Oxolinic acid-resistant mutations of Bacillus subtilis. J General Microbiol 127:1–9

    CAS  Google Scholar 

  • Voigt W-H, Zeiler H-J (1985) Influence of ciprofloxacin on the ultrastructure of Gram-negative and Gram-positive bacteria. Arzneim-Forsch 35:1601–1603

    Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to DNA damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Walker JR, Pardee AB (1968) Evidence for a relationship between DNA metabolism and septum formation in Escherichia coli. J Bacteriol 95:123–131

    PubMed  CAS  Google Scholar 

  • Walker JR, Ussery CL, Allen JS (1973) Bacterial cell division regulation: lysogenization of conditional cell division Ion mutants of Escherichia coli by bacteriophage X. J Bacteriol 113:1326–1332

    PubMed  CAS  Google Scholar 

  • Wang JC (1987) Recent studies of DNA topoisomerases. Biochim Biophys Acta 909:1–9

    PubMed  CAS  Google Scholar 

  • Winshell EB, Rosenkranz HS (1970) Nalidixic acid and the metabolism of Escherichia coli. J Bacteriol 104:1168–1175

    PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, McHugh GL, Bozza MA, Shih DJ, Swartz MN (1989a) Co-tolerance of Escherichia coli mutants to quinolone and ß-lactam agents. Annual Meeting of the American Society for Microbiology, New Orleans, Louisiana, Abstract #A82

    Google Scholar 

  • Wolfson JS, Hooper DC, McHugh GL, Bozza MA, Swartz MN (1989b) Genetic studies of killing of Escherichia coli by quinolones and ß-lactam s. 29th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Houston, Texas, Abstract #141

    Google Scholar 

  • Wolfson JS, Hooper DC, Shih DJ, McHugh GL, Swartz MN (1989c) Isolation and characterization of an Escherichia coli strain exhibiting partial tolerance to quinolones. Antimicrob Agents Chemother 33:705–709

    PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, Swartz MN (1989d) Mechanisms of action of, and resistance to, quinolone antimicrobial agents. In: Wolfson JS, Hooper DC (eds) The quinolone antimicrobial agents. American Society for Microbiology, Washington, DC, pp 5–34

    Google Scholar 

  • Woolfrey BE, Lally RT, Ederer MN (1985) Evaluation of oxacillin tolerance in Staphylococcus aureus by a novel method. Antimicrob Agents Chemother 28:381–388

    PubMed  CAS  Google Scholar 

  • Zeiler H-J (1985) Evaluation of the in vitro bactericidal action of ciprofloxacin on cells of Escherichia coli in the logarithmic and stationary phases of growth. Antimicrob Agents Chemother 28:524–527

    PubMed  CAS  Google Scholar 

  • Zeiler H-J, Grohe K (1984) The in vitro and in vivo activity of ciprofloxacin. Eur J Clin Microbiol 3:339–343

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wolfson, J.S., Hooper, D.C. (1990). Mechanisms of Killing of Bacteria by 4-Quinolones. In: Crumplin, G.C. (eds) The 4-Quinolones: Anti Bacterial Agents in Vitro. Springer Series in Applied Biology. Springer, London. https://doi.org/10.1007/978-1-4471-3449-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3449-7_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3451-0

  • Online ISBN: 978-1-4471-3449-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics