Skip to main content

Part of the book series: Springer Series in Applied Biology ((SSAPPL.BIOLOGY))

Abstract

With expanding clinical use of the 4-quinolone antibacterial agents, resistance to these agents has been identified (Wolfson and Hooper 1989a,b), and its mechanisms have been the subject of increasing study. In this article we review the current information on the mechanisms of bacterial resistance to 4-quinolones. Information related to the frequency of selection of 4-quinolone resistance and the possibilities of plasmid-mediated 4-quinolone resistance are covered in other chapters in this book and will not be addressed here in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyama H, Fujimaki K, Sato K, Fujii T, Inoue M, Hirai K, Mitsuhashi S (1988) Clinical isolate of Citrobacter freundii highly resistant to new quinolones. Antimicrob Agents Chemother 32:922–924

    PubMed  CAS  Google Scholar 

  • Aoyama H, Sato K, Kato T, Hirai K, Mitsuhashi S (1987) Norfloxacin resistance in a clinical isolate of Escherichia coli Antimicrob Agents Chemother 31:1640–1641

    PubMed  CAS  Google Scholar 

  • Bayer AS, Hirano L, Yih J (1988) Development of ß-lactam resistance and increased quinolone MICs during therapy of experimental Pseudomonas aeruginosa endocarditis. Antimicrob Agents Chemother 32:231–235

    PubMed  CAS  Google Scholar 

  • Bedard J, Wong S, Bryan LE (1987) Accumulation of enoxacin by Escherichia coli and Bacillus subtilis Antimicrob Agents Chemother 31:1348–1354

    PubMed  CAS  Google Scholar 

  • Bourguignon G J, Levitt M, Stemglanz R (1973) Studies on the mechanism of action of nalidixic acid. Antimicrob Agents Chemother 4:479–486

    PubMed  CAS  Google Scholar 

  • Chamberland S, Bayer AS, Schollaardt T, Wong SA, Bryan LE (1989) Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis. Antimicrob Agents Chemother 33:624–634

    PubMed  CAS  Google Scholar 

  • Cohen SP, Hooper DC, Wolfson JS, Souza KS, McMurry LM, Levy SB (1988a) Endogenous active efflux of norfloxacin in susceptible Escherichia coli Antimicrob Agents Chemother 32:1187–1191

    PubMed  CAS  Google Scholar 

  • Cohen SP, McMurry LM, Levy SB (1988b) marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli J Bacteriol 170:5416–5422

    PubMed  CAS  Google Scholar 

  • Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB (1989) Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline and chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 33:1318–1325

    PubMed  CAS  Google Scholar 

  • Cullen ME, Wyke AW, Kuroda R, Fisher LM (1989) Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother 33:886–894

    PubMed  CAS  Google Scholar 

  • Daikos GL, Lolans VT, Jackson GG (1988) Alterations in outer membrane proteins of Pseudomonas aeruginosa associated with selective resistance to quinolones. Antimicrob Agents Chemother 32:785–787

    Google Scholar 

  • Dang P, Gutmann L, Quentin C, Williamson R, Collatz E (1988) Some properties of Serratia marcescens, Salmonella paratyphi A, and Enterobacter cloacae with non-enzyme-dependent multiple resistance to ß-lactam antibiotics, aminoglycosides, and quinolones. Rev Infect Dis 10:899–904

    Article  PubMed  CAS  Google Scholar 

  • Desplaces N, Gutmann L, Carlet J, Guibert J, Acar JF (1986) The new quinolones and their combination with other agents for therapy of severe infections. J Antimicrob Chemother 17(Suppl A):25–39

    PubMed  CAS  Google Scholar 

  • Fujimaki K, Fujii T, Aoyama H, Sato K-I, Inoue Y, Inoue M, Mitsushashi S (1989) Quinolone resistance in clinical isolates of Serratia marcescens Antimicrob Agents Chemother 33:785–787 Geliert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910

    Google Scholar 

  • Geliert M, O’Dea MH, Itoh T, Tomizawa J-I (1976) Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci USA 73:4474–4478

    Article  Google Scholar 

  • Geliert M, Mizuuchi K, O’Dea MH, Nash HA (1977) Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA 74:4772–4776

    Article  Google Scholar 

  • George AM, Levy SB (1983a) Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155:531–540

    PubMed  CAS  Google Scholar 

  • George AM, Levy SB (1983b) Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 155:541–548

    PubMed  CAS  Google Scholar 

  • GiamareUou H, Galanakis N, Dendrinos C, Stefanou J, Daphnis E, Daikos GK (1986) Evaluation of ciprofloxacin in the treatment of Pseudomonas aeruginosa infections. Eur J Clin Microbiol 5:232–235

    Article  Google Scholar 

  • Gutmann L, Williamson R, Moreau N, Kitzis M-D, Collatz E, Acar JF, Goldstein FW (1985) Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter, and Serratia J Infect Dis 151:501–507

    Article  PubMed  CAS  Google Scholar 

  • Hane MW, Wood TH (1969) Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J Bacteriol 99:238–241

    PubMed  CAS  Google Scholar 

  • Helling RB, Adams BS (1970) Nalidixic acid-resistant auxotrophs of Escherichia coli J Bacteriol 104:1027–1029

    PubMed  CAS  Google Scholar 

  • Helling RB, Kukora JS (1971) Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J Bacteriol 105:1224–1226

    PubMed  CAS  Google Scholar 

  • Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S (1986) Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli Kl2. Antimicrob Agents Chemother 30:248–253

    PubMed  CAS  Google Scholar 

  • Hirai K, Suzue S, Irikura T, Iyobe S, Mitsuhashi S (1987) Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa Antimicrob Agents Chemother 31:582–586

    PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN (1986) Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli Antimicrob Agents Chemother 29:639–644

    PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Ng EY, Swartz MN (1987) Mechanisms of action of and resistance to ciprofloxacin. Am J Med 82(Suppl 4A): 12–20

    PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Souza KS, Ng EY, McHugh GL, Swartz MN (1989) Mechanisms of quinolone resistance in Escherichia coli characterization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrob Agents Chemother 33:283–290

    PubMed  CAS  Google Scholar 

  • Horowitz DS, Wang JC (1987) Mapping the active site tyrosine of Escherichia coli DNA gyrase. J Biol Chem 262:5339–5344

    PubMed  CAS  Google Scholar 

  • Hrebenda J, Heleszko H, Brzostek K, Bielecki J (1985) Mutation affecting resistance of Escherichia coli K12 to nalidixic acid. J Gen Microbiol 131:2285–2292

    PubMed  CAS  Google Scholar 

  • Inoue Y, Sato K, Fujii T, Hirai K, Inoue M, Iyobe S, Mitsuhashi S (1987) Some properties of subunit s of DNA gyrase from Pseudomonas aeruginosa PAOl and its nalidixic-acid-resistant mutant. J Bacteriol 169:2322–2325

    PubMed  CAS  Google Scholar 

  • Isaacs RD, Kunke PJ, Cohen RJ, Smith JW (1988) Ciprofloxacin resistance in epidemic methicillin-resistant Staphylococcus aureus Lancet ii:843

    Article  Google Scholar 

  • Kresken M, Wiedemann B (1988) Development of resistance to nalidixic acid and the fluoroquinolones after introduction of norfloxacin and ofloxacin. Antimicrob Agents Chemother 32:1285–1288

    PubMed  CAS  Google Scholar 

  • Kumada T, Neu HC (1985) In vitro activity of ofloxacin, a quinolone carboxylic acid compared to other quinolones and other antimicrobial agents. J Antimicrob Chemother 16:563–574

    Article  PubMed  CAS  Google Scholar 

  • Kumar S (1976) Properties of adenyl cyclase and cyclic adenosine 3’,5’-monophosphate receptor protein-deficient mutants of Escherichia coli J Bacteriol 125:545–555

    PubMed  CAS  Google Scholar 

  • Kumar S (1980) Types of spontaneous nalidixic acid resistant mutants of Escherichia coli Indian J Exp Biol 18:341–343

    PubMed  CAS  Google Scholar 

  • Lampe MF, Bott KF (1985) Genetic and physical organization of the cloned gyrA and gyrB genes of Bacillus subtilis J Bacteriol 162:78–84

    PubMed  CAS  Google Scholar 

  • Legakis NJ, Tzouvelekis LS, Makris A, Kotsifaki H (1989) Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected with ciprofloxacin. Antimicrob Agents Chemother 33:124–127

    PubMed  CAS  Google Scholar 

  • Lucain C, Regamey P, Bellido F, Pechère J-C (1989) Resistance emerging after pefloxacin therapy of experimental Enterobacter cloacae peritonitis. Antimicrob Agents Chemother 33:937–943

    PubMed  CAS  Google Scholar 

  • Misra R, Reeves PR (1987) Role of micF in the tolC-mediated regulation of OmpF, a major outer membrane protein of Escherichia coli K-12. J Bacteriol 169:4722–4730

    PubMed  CAS  Google Scholar 

  • Mizuno T, Chou M-Y, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970

    Article  PubMed  CAS  Google Scholar 

  • Mouton RP, Mulders SLTA (1987) Combined resistance to quinolones and ß-lactams after in vitro transfer on single drugs. Chemotherapy (Basel) 33:189–196

    Article  CAS  Google Scholar 

  • Nakamura S, Nakamura M, Kojima T, Yoshida H (1989) gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli Antimicrob Agents Chemother 33:254–255

    PubMed  CAS  Google Scholar 

  • Nikaido H (1985) Role of permeability barriers in resistance to ß-lactam antibiotics. Pharmac Ther 27:197–231

    Article  CAS  Google Scholar 

  • Piddock UV, Hall M, Griggs DJ, Wise R (1989) Selection and phenotypic characterization of the mechanism of resistance of enterobacteriaceae to quinolones. Rev Infect Dis ll(Suppl 5): S977–S978

    Google Scholar 

  • Piddock LJV, Wijnands WJA, Wise R (1987) Quinolone/ureidopenicillin cross-resistance. Lancet ii:907

    Article  Google Scholar 

  • Relia M, Haas D (1982) Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of ß-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 22:242–249

    Google Scholar 

  • Robillard NJ, Scarpa AL (1988) Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 32:535–539

    PubMed  CAS  Google Scholar 

  • Sanders CC, Watanakunakorn C (1986) Emergence of resistance to ß-lactams, aminoglycosides, and quinolones during combination therapy for infection due to Serratia marcescens J Infect Dis 153:617–619

    Article  PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders WE Jr, Goering RV, Werner V (1984) Selection of multiple antibiotic resistance by quinolones, ß-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother 26:797–801

    PubMed  CAS  Google Scholar 

  • Schaefler S (1989) Methicillin-resistant strains of Staphylococcus aureus resistant to quinolones. J Clin Microbiol 27:335–336

    PubMed  CAS  Google Scholar 

  • Setlow JK, Cabrera-Juarez E, Albritton WL, Spikes D, Mutschler A (1985) Mutations affecting gyrase in Haemophilus influenzae J Bacteriol 164:525–534

    PubMed  CAS  Google Scholar 

  • Shalit I, Berger SA, Gorea A, Frimerman H (1989) Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus isolates in a general hospital. Antimicrob Agents Chemother 33:593–594

    PubMed  CAS  Google Scholar 

  • Shen LL, Kohlbrenner WE, Weigl D, Baranowski J (1989a) Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes. J Biol Chem 264:2973–2978

    PubMed  CAS  Google Scholar 

  • Shen LL, Mitscher LA, Sharma PN, O’Donnell TJ, Chu DWT, Cooper CS, Rosen T, Pemet AG (1989b) Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model. Biochemistry 28:3886–3894

    Article  PubMed  CAS  Google Scholar 

  • Smith JT (1984) Mutational resistance to 4-quinolone antibacterial agents. Eur J Clin Microbiol 3: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Bott KF (1980) Bacillus subtil is deoxyribonucleic acid gyrase. J Bacteriol 141:1331–1339

    PubMed  CAS  Google Scholar 

  • Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 74:4767–4771

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Higgins NP, Brown PO, Peebles CL, Cozzarelli NR (1978) Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc Natl Acad Sci USA 75:4838–4842

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Higgins NP, Cozzarelli NR (1980) DNA gyrase subunit stoichiometry and the covalent attachment of subunit A to DNA during DNA cleavage. Nucl Acids Res 8:3865–3874

    Article  PubMed  CAS  Google Scholar 

  • Traub WH (1985) Incomplete cross-resistance of nalidixic and pipemidic acid-resistant variants of Serratia marcescens against ciprofloxacin, enoxacin, and norfloxacin. Chemotherapy (Basel) 31:34–39

    Article  CAS  Google Scholar 

  • Traub WH, Kleber I (1977) Selected and spontaneous variants of Serratia marcescens with combined resistance against chloramphenicol, nalidixic acid, and trimethoprim. Chemotherapy (Basel) 23:436–451

    Article  CAS  Google Scholar 

  • Ubukata K, Itoh-Yamashita N, Konno M (1989) Cloning and expression of the nor A gene for fluoroquinolone resistance in Staphylococcus aureus Antimicrob Agents Chemother 33: 1535–1539

    PubMed  CAS  Google Scholar 

  • Walton JR, Smith DH (1969) New hemolysin (7) produced by Escherichia coli J Bacteriol 93:304–305

    Google Scholar 

  • Wolfson JS, Hooper DC (1989a) Bacterial resistance to quinolones: mechanisms and clinical importance. Rev Infect Dis ll(Suppl 5):S960–S968

    Article  Google Scholar 

  • Wolfson JS, Hooper DC (1989b) Fluoroquinolone antimicrobial agents. Clin Microbiol Rev 2: 378–424

    PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, Ng EY, Souza KS, McHugh GL, Swartz MN (1987) Antagonism of wild-type and resistant Escherichia coli and its DNA gyrase by the tricyclic 4-quinolone analogs ofloxacin and S-25930 stereoisomers. Antimicrob Agents Chemother 31:1861–1863

    PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC (1989b) Fluoroquinolone antimicrobial agents. Clin Microbiol Rev 2: 378–424

    PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, Ng EY, Souza KS, McHugh GL, Swartz MN (1987) Antagonism of wild-type and resistant Escherichia coli and its DNA gyrase by the tricyclic 4-quinolone analogs ofloxacin and S-25930 stereoisomers. Antimicrob Agents Chemother 31:1861–1863

    PubMed  CAS  Google Scholar 

  • Yamagishi JI, Yoshida H, Yamayoshi M, Nakamura S, Shimizu M. (1981) New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity. J Bacteriol 148:450–458

    PubMed  CAS  Google Scholar 

  • Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S (1986) Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli Mol Gen Genet 204:367–373

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kojima T, Yamagishi J, Nakamura S (1988) Quinolone-resistant mutations of the gyrA gene of Escherichia coli Mol Gen Genet 211:1–7

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hooper, D.C., Wolfson, J.S. (1990). Mechanisms of Resistance to 4-Quinolones. In: Crumplin, G.C. (eds) The 4-Quinolones: Anti Bacterial Agents in Vitro. Springer Series in Applied Biology. Springer, London. https://doi.org/10.1007/978-1-4471-3449-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3449-7_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3451-0

  • Online ISBN: 978-1-4471-3449-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics