Skip to main content

Intestinal Bacteria and Disease

  • Chapter
Human Health

Part of the book series: Springer Series in Applied Biology ((SSAPPL.BIOLOGY))

Abstract

At the beginning of this century, Metchnikoff (1907) suggested that bacteria growing in the human large intestine affected health and longevity of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnen DJ (1991) Etiology of large bowel cancer. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology and disease. Raven Press Ltd, New York pp 501–520

    Google Scholar 

  • Allison C, Macfarlane GT (1988) Effect of nitrate on methane production by slurries of human faecal bacterial. J Gen Microbiol 134: 1397–1405

    PubMed  CAS  Google Scholar 

  • Alpem RJ, Dowell VR (1969) Clostridium septicum infections and malignancy. J Am Med Assoc 209: 385–389

    Google Scholar 

  • Archer MC, Saul RL, Lee LT, Bruce WR (1981) Analysis of nitrate, nitrite and nitrosamines in human feces. In: Bruce WR, Correa P, Lipkin M, Tannenbaum SRR (eds) Banbury report no 7. Cold Spring Harbor Laboratory, New York pp 321–327

    Google Scholar 

  • Aries VC, Crowther JS, Drasar BS, Hill MJ, Ellis FR (1971) The effect of a strict vegetarian diet on the faecal flora and faecal steroid concentration. J Pathol 103: 54–56

    Article  PubMed  CAS  Google Scholar 

  • Aries VC, Crowther JS, Drasar BS, Hill MJ, Williams REO (1969) Bacteria and the etiology of cancer of the large bowel. Gut 10: 334–335

    Article  PubMed  CAS  Google Scholar 

  • Bahr GM, Chedid L (1986) Immunological activites of muramyl Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50: 23–40

    Google Scholar 

  • Barnes WS, Mailler J, Weisburger JH (1983) In vitro binding of the food mutagen 2-amino-3methylimidazo [4,5-f] quinoline (IQ) and analogs. Carcinogenesis 6: 441–444

    Google Scholar 

  • Bartlett JG (1983) Pseudomembranous colitis. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, London pp 448–479

    Google Scholar 

  • Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB (1978) Antibiotic-associated pseudomembranous colitis due to toxin producing clostridia. N Engl J Med 298: 531–534

    Article  PubMed  CAS  Google Scholar 

  • Bashir M, Kingston DGI, Carman RL, Van Tassell RL, Wilkins TD (1987) Anaerobic metabolism of 2-amino-3-methyl-3H-imidazo [4,5-f] quinoline ( IQ) by human fecal flora. Mutat Res 190: 187–190

    Google Scholar 

  • Bennet JD, Brinkman M (1989) Treatment of ulcerative colitis by implantations of normal colonic flora. Lancet 164

    Google Scholar 

  • Bone E, Tamm A, Hill MJ (1976) The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr 29: 1448–1454

    PubMed  CAS  Google Scholar 

  • Borriello SP (1985) Newly described clostridial diseases of the gastrointestinal tract: Clostridium perfringens enterotoxin-associated diarrhea and neutropenic enterocolitis due to Clostridium septicum. In: Borriello SP (ed) Clostridia in gastrointestinal disease. CRC Press, Boca Raton pp 223–229

    Google Scholar 

  • Bradley HK, Wyatt GM, Bayliss CE, Hunter JO (1987) Instability in the faecal flora of a patient suffering from food-related irritable bowel syndrome. Med Microbiol 23: 29–32

    Article  CAS  Google Scholar 

  • Branscomb CJ, Holder CL, Kofmacher WA, Cemiglia CE, Rushing LG (1988) GC/MS characterisation of urinary metabolites of deoxyalanine succinate: identification of aglycones formed from intestinal microflora metabolism of the polar glucuronide metabolites. J High Res Chromat and Chromat Comm 11: 517–520

    Article  CAS  Google Scholar 

  • Bruce WR, Dion PW (1980) Studies relating to a fecal mutagen. Am J Clin Nutr 33: 2511–2512

    PubMed  CAS  Google Scholar 

  • Bruce WR, Varghese AJ, Wang S, Dion P (1979) The endogenous production of nitroso compounds in the colon and cancer at that site. In: Miller EC (ed) Naturally occurring carcinogens, mutagens and modulators of carcinogenesis. Japan Sci Press, Tokyo pp 221–228

    Google Scholar 

  • Calmmels S, Ohshima H, Vincent P, Gounat AM, Bartsch H (1985) Screening of microorganisms for nitrosation catalysis at p117 and kinetic studies on nitrosamine formation from secondary amines by Escherichia coli strains. Carcinogenesis 6: 911–916

    Article  Google Scholar 

  • Carmen RJ, Van Tassel RL, Kingston DGI, Bashir M, Wilkins TD (1987) Conversion of IQ, a dietary pyrolysis carcinogen, to a direct acting mutagen by normal intestinal bacteria of humans. Mutat Res 206: 335–342

    Google Scholar 

  • Chadwick VS (1991) Etiology of chronic ulcerative colitis and Crohn’s disease. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology and disease. Raven Press Ltd, New York pp 445–463

    Google Scholar 

  • Chadwick VS, Mellor DM, Myers DB (1988) Production of peptides inducing chemotaxis and lysosomal enzyme release in human neutrophils by intestinal bacteria in vitro and in vivo. Scan J Gastroenterol 23: 121–128

    Article  CAS  Google Scholar 

  • Chiodini RJ, Van Kruningen HJ, Thayer WR, Merkal RS, Coutu JA (1984) Possible role of mycobacteria in inflammatory bowel disease. 1 An unclassified Mycobacterium species isolated from patients with Crohn’s disease. Dig Dis Sci 29: 1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Chung KT, Folk GE, Egan M (1978) Reduction of azo dyes by intestinal anerobes. Appl Environ Microbiol 35: 558–562

    PubMed  CAS  Google Scholar 

  • Chung KT, Folk GE, Slein MW (1975) Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. J Nat Can I ns 54: 1073–1078

    Google Scholar 

  • Clark AG, Fischer LG, Millburn P, Smith PL, Williams RT (1969) The role of the gut flora in the enterohepatic circulation of stilboestrol in the rat. Biochem J 112: 17 P

    Google Scholar 

  • Cohen MB, Giannella RA (1991) Bacterial infections: pathophysiology, clinical features and treatment. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology and disease. Raven Press Ltd, New York pp 395–428

    Google Scholar 

  • Cooperstock MS, Zedd AJ (1983) Intestinal flora of infants. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, London pp 79–99

    Google Scholar 

  • Cummings JH (1985) Cancer of the large bowel. In: Trowell H, Burkitt D, Heaton K (eds) Dietary fibre, fibre depleted foods and disease. Academic Press, London pp 161–189

    Google Scholar 

  • Dion P, Bruce WR (1983) Mutagenicity of different fractions of extracts of human feces. Mutat Res 119: 151–160

    Article  PubMed  CAS  Google Scholar 

  • Donta ST, Myers MG (1982) Clostridium difficile toxin in asymptomatic neonates. J Pediatr 10: 431–434

    Google Scholar 

  • Drasar BS, Hill MJ (1974) Human intestinal flora. Academic Press, London

    Google Scholar 

  • Fellitti VJ (1973) Primary invasion by Clostridium sphenoides in a patient with periodic neutropenia. Calif Med 133: 76–78

    Google Scholar 

  • Felton JS, Knize MG, Wood C, Wuebbles BJ, Really KS, Stuermer DH, Bjeldanes LF, Kimble BJ, Hatch FT (1984) Isolation and characterisation of new mutagens from fried ground beef. Carcinogenesis 5: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Finegold SM, Flora DJ, Attlebury HR, Sutter LV (1975) Fecal bacteriology of colonic polyp patients and control patients. Cancer Res 35: 3407–3417

    PubMed  CAS  Google Scholar 

  • Florin THJ, Gibson GR, Neale G, Cummings JH (1990) A role for sulfate-reducing bacteria in ulcerative colitis? Gastroenterology 98: A170

    Google Scholar 

  • Fu PP, Cemiglia CE, Richardson KE, Heflich RII (1988) Nitroreduction of 6-nitrobenzo[alpyrene: a potential activation pathway in humans. Mutat Res 209: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Gale EF (1946) The bacterial amino acid decarboxylases. Adv Enzymol 6: 1–32

    CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfarlane GT (1991) Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 86: 103–112

    Article  CAS  Google Scholar 

  • Gilmour AM (1989) Crohn’s disease. In: Whitehead R (ed) Gastrointestinal and oesophageal pathology. Churchill Livingstone, Edinburgh, p 540

    Google Scholar 

  • Gitnick G, Collins J, Beaman B, Brooks D, Arthur M (1985) Mycobacteria in Crohn’s disease. Gastroenterology 88: A15–92

    Google Scholar 

  • Goldin B (1986) In situ bacterial metabolism and colon mutagens. Ann Rev Microbiol 40: 367–393

    Article  CAS  Google Scholar 

  • Goldschmidt MC, Lockhart BM (1971) Rapid methods for determining decarboxylase activity: arginine decarboxylase. Appl Microbiol 22: 350–357

    Google Scholar 

  • Graham DY, Markesich DC, Yoshimura HH (1987) Mycobacteria and inflammatory bowel disease. Results of culture. Gastroenterology 92: 436–442

    Google Scholar 

  • Gruter H (1985) Gas gangrene following antibiotic-associated enterocolitis in hereditary neutropenia. Arch Anat Cytol Pathol 33: 23–25

    PubMed  CAS  Google Scholar 

  • Hagopian HK, Riggs MG, Swartz LA, Ingram VM (1977) Effect of n-butyrate on DNA synthesis in chick fibroblasts and hela cells. Cell 12: 855–860

    Article  PubMed  CAS  Google Scholar 

  • Hill MJ (1986) The possible role of bacteria in inflammatory bowel disease. Curt Con Gastroenterol 3: 10–14

    Google Scholar 

  • Hill MJ, Drasar BS, Aries V, Crowther IS, Williams REO (1971) Bacteria and aetiology of cancer of the large bowel. Lancet 95–100

    Google Scholar 

  • Hill MJ, Drasar BS, Williams REO, Meade TW, Cox AG, Simpson JEP, Morson BC (1975) Faecal bile acids and clostridia in patients with cancer of the large bowel. Lancet 535–538

    Google Scholar 

  • Iyengar R, Stuele DJ, Marietta MA (1987) Macrophage synthesis of nitrite, nitrate and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84: 6397–6373

    Article  Google Scholar 

  • Janowitz HD, Bilotta JJ (1991) Critical evaluation of the medical therapy of inflammatory bowel disease. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, paophysiology and disease. Raven Press Ltd, New York pp 475–500

    Google Scholar 

  • Kasai HZ, Nishimura S, Wakabayashi K, Nagao M, Sugimura T (1980a) Chemical synthesis of 2-amino3-methylimidazole [4,5-f] quinoline ( IQ), a potent mutagen isolated from broiled fish. Proc Jpn Acad 56: 382–384

    Google Scholar 

  • Kasai HZ, Yamauimi Z, Wakabayashi K, Nagao M, Sugimura T (1980b) Potent novel mutagens produced by broiling fish under normal conditions. Proc Jpn Acad 56: 278–283

    Article  CAS  Google Scholar 

  • Kim YS, Tsao D, Morita A, Bella A (1982) Effect of sodium butyrate and three human colorectal adenocarcinoma cell lines in culture. Falk Symp 31: 317–323

    CAS  Google Scholar 

  • King A, Rampling A, Wright DGD, Warren RE (1984) Neutropenic enterocolitis due to Clostridium septicum infection. J Clin Pathol 37: 335–343

    Article  PubMed  CAS  Google Scholar 

  • Kingston DGI, Van Tassel RL, Wilkins TD (1990) The fecapentaenes, potent mutagens from human feces. Chem Res Toxicol 3: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Lupton JR (1991) Dietary fiber and short chain fatty acids–implications for colon cancer: animal models. In: Cummings JH, Rombeau JL, Sakata T (eds) Short chain fatty acids: metabolism and clinical importance. Ross Laboratories Press, Columbus pp 86–90

    Google Scholar 

  • MacDonald IA, Bussard RG, Hutchinson DM, Holdeman LV (1984) Rutin-induced ß-glucosidase activity in Streptococcus faecium VGH-1 and Streptococcus sp. strain FRP-17 isolated from human feces. Formation of the mutagen quercetin from rutin. Appl Environ Microbiol 47: 350–355

    Google Scholar 

  • Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132: 1647–1656

    PubMed  CAS  Google Scholar 

  • Macfarlane GT, Gibson GR, Cummings JH (1991) Extracellular and cell-associated glycosidase

    Google Scholar 

  • activities in different regions of the human large intestine. Lett Appl Microbiol 12, 3–7

    Google Scholar 

  • Manning BW, Campbell WL, Franklin W, Declos KB, Cemiglia CE (1988) Metabolism of 6-nitrochrysene by intestinal microflora. Appl Environ Microbiol 54: 197–203

    PubMed  CAS  Google Scholar 

  • Marcus R, Watt J (1969) Seaweeds and ulcerative colitis in laboratory animals. Lancet 489–490 Metchnikoff E ( 1907 ) The prolongation of life. Heinemann, London

    Google Scholar 

  • Monteiro E, Fossey J, Shiner M, Drasar BS, Allison AC (1971) Antibacterial antibodies in rectal and colonic mucosa in ulcerative colitis. Lancet 249–251

    Google Scholar 

  • Moore WEC, Holdeman LV (1975) Discussion of current bacteriological investigations of the relationships between intestinal flora, diet, and colon cancer. Cancer Res 35: 3418–3420

    Google Scholar 

  • Morotomi M, Guillem JG, LoGerfo P, Weinstein IB (1990) Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora.Cancer Res 50: 3595–3599

    CAS  Google Scholar 

  • Newbold KM, Lord MG, Baglin TP (1987) Role of clostridial organisms in neutropenic enterocolitis. J Clin Pathol 40: 471

    Article  PubMed  CAS  Google Scholar 

  • Onderdonk AB (1983) Role of the intestinal microflora in ulcerative colitis. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, London pp 481–493

    Google Scholar 

  • Onderdonk AB, Bartlett MD (1979) Bacteriological studies of experimental ulcerative colitis. Am J Clin Nutr 32: 258–265

    PubMed  CAS  Google Scholar 

  • Onderdonk AB, Hermos JA, Dzink JL, Barlett JG (1978) Protective effect of metronidazole in experimental ulcerative colitis. Am J Clin Nutr 32: 1819–1825

    Google Scholar 

  • Prasad KN (1980) Butyric acid: a small fatty acid with diverse biological functions. Life Sci 27: 1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Price AB (1977) Difficulties in the differential diagnosis of ulcerative colitis and Crohn’s disease. In: Yardley H, Morson BC (eds) The gastrointestinal tract, Williams and Wilkins, Baltimore pp 1–14

    Google Scholar 

  • Radcliffe BC, Nance SH, Deakin FJ, Roediger WEW (1985) Nitrate and nitrite content of ileostomy effluent after a normal or high nitrate meal. Clin Invest Med 8: A94

    Google Scholar 

  • Rafii F, Franklin W, Cemiglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56: 2146–2151

    PubMed  CAS  Google Scholar 

  • Renwick 1986 Gut bacteria and the metabolism of aromatic amino acids. In: Hill MJ (ed) Microbial metabolism in the digestive tract. CRC Press, Boca Raton, pp 107–122

    Google Scholar 

  • Richardson KE, Fu PP, Cemiglia CE (1988) Metabolism of 1-, 3-, and 6-nitrobenzo[a]pyrene by intestinal microflora. J Toxicol Environ Health 23: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Roediger WEW (1992) The role of sulphur metabolism and mercapto fatty acids in the aetiology of ulcerative colitis. In: Goebell H, Ewe H, Malchow H (eds) Inflammatory bowel diseases. Progress in basic research and clinical implications, MW Press, Lancaster - in press

    Google Scholar 

  • Rowland IR (1988) Interactions of the gut microflora and the host in toxicology. Toxicol Pathol 16: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Sartor RB, Cromartie WJ, Powell DW, Schwab JH (1985) Granulomatous enterocolitis induced in rats by purified bacterial cell wall fragments. Gastroenterology 89: 587–595

    PubMed  CAS  Google Scholar 

  • Schaffer JL, Hughes S, Linaker BD, Baker RD, Tumberg LA (1984) Controlled trial of rifampicin and ethambutol in Crohn’s disease. Gut 25: 203–205

    Article  Google Scholar 

  • Schiffman MH, Bittennan P, Viciana AL, Schairer C, Russell L, Van Tassell RL, Wilkins TD (1988) Fecapentaenes and their precursors throughout the bowel–an autopsy study. Mutat Res 208: 9–15

    Article  PubMed  CAS  Google Scholar 

  • Spatz M, Smith DWE, McDaniel EG, Laquer GL (1967) Role of intestinal microorganisms in determining cycasin toxicity. Prc Soc Biol Med (New York) 124: 691–697

    CAS  Google Scholar 

  • Spoelstra SF (1977) Simple phenol and indoles in anaerobically stored piggery wastes. J Sci Food Agr 28: 415–423

    Article  CAS  Google Scholar 

  • Suzuki K, Mitsuoka T (1984) N-nitrosamine formation by intestinal bacteria. In: O’Neill IK, von Borstel RC, Miller CT, Long J, Bartsch H (eds) Nitroso compounds: occurrence, biological effects and relevance to human cancer. Int Agency Res Cancer, Lyon pp 275–281

    Google Scholar 

  • Tamura G, Gold C, Ferro-Luzzi A, Ames BN (1980) Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proc Natl Acad Sci (USA) 77: 4961–4965

    Article  CAS  Google Scholar 

  • Tedesco FJ (1976) Clindamycin-associated colitis. Review of the clinical spectrum of 47 cases. Dig Dis 21: 26–32

    Article  CAS  Google Scholar 

  • Thompson MH (1982) The role of diet in relation to faecal bile acid concentration and large bowel cancer. In: Malt RA, Williamson RCN (eds) Colonic carcinogenesis. MTP Press, The Hague pp 49–56

    Google Scholar 

  • Van Tassell RL, Kingston DGI, Wilkins TD (1990) Metabolism of dietary genotoxins by the human colonic microflora: the fecapentaenes and heterocyclic amines. Mutat Res 238: 209–221

    PubMed  Google Scholar 

  • Van Tassell RL, MacDonald DK, Wilkins TD (1982a) Production of a fecal mutagen by Bacteroides spp. Infect Imm 37: 975–980

    Google Scholar 

  • Van Tassell RL, MacDonald DK, Wilkins TD (1982b) Stimulation of mutagen production in human feces by bile and bile acids. Mutat Res 103: 233–239

    Article  PubMed  Google Scholar 

  • Van Tassell RL, Piccariello T, Kingston DGI, Wilkins TD (1989) The precursors of fecapentaenes: purification and properties of a novel plasmologen. Lipids 24: 454–459

    Article  PubMed  Google Scholar 

  • Vargo D, Moskovitz M, Flock MH (1980) Faecal bacterial flora in cancer of the colon. Gut 21: 701–705 Watt J, Marcus R (1971) Carrageenan induced ulceration of the large intestine in the guinea pig. Gut 12: 164–171

    Google Scholar 

  • Whitehead R (1989) Ulcerative colitis. In: Whitehead R (ed) Gastrointestinal and oesophageal physiology, Churchill Livingstone, Edinburgh pp 522–531

    Google Scholar 

  • Wilkins TD, Van Tassell RL (1983) Production of intestinal mutagens. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, London pp 265–288

    Google Scholar 

  • Williams RT (1972) Toxicological implications of biotransformation by intestinal microflora. Toxicol Appl Pharm 23: 769–781

    Article  CAS  Google Scholar 

  • Witter JP, Balish E, Gatley SJ (1979) Distribution of nitrogen-13 from labelled nitrate and nitrite in germ-free and conventional flora rats. Appl Environ Microbiol 38: 870–878

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gibson, G.R., Macfarlane, G.T. (1994). Intestinal Bacteria and Disease. In: Gibson, S.A.W. (eds) Human Health. Springer Series in Applied Biology. Springer, London. https://doi.org/10.1007/978-1-4471-3443-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3443-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3445-9

  • Online ISBN: 978-1-4471-3443-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics