Skip to main content

The Systemic and Pulmonary Circulations

  • Chapter
Care of the Critically Ill Patient
  • 890 Accesses

Abstract

It is a fundamental physiological truism that the heart and circulation are servants to the oxygen and energy requirements of metabolically active tissues. In their classic work Respiration Haldane and Priestley [42], in explaining this relationship, comment: “The heart and vasomotor system are only the executive agents which carry out the bidding of the tissues, just as the lungs and nervous system do in the case of breathing”. This is a principle which is so easily overlooked by the student faced with the study of cardiovascular function, and yet crucial in the clinical care of patients, where many pathological states are manifestations of failure of this master-to-servant relationship. It follows therefore that we should begin this résumé by finding out what makes a good servant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud FM (1979) Integration of reflex responses in the control of blood pressure and vascular resistance. Am J Cardiol 44: 903–911

    Article  PubMed  CAS  Google Scholar 

  2. Abboud FM, Eckberg DL, Johanssen VJ, Mark AL (1979) Carotid and cardiopulmonary baroreceptor control of splanchnic and forearm vascular resistance during venous pooling in man. J Physiol (Lond) 286: 173–184

    CAS  Google Scholar 

  3. Adelstein RS, Hathaway DR (1979) Role of calcium and cyclic adenosine 3′:5′ monophosphate in regulating smooth muscle. Am J Cardiol 44: 783–787

    Article  PubMed  CAS  Google Scholar 

  4. Barer GR, Howard P, Shaw JW (1970) Stimulus-response curves of the pulmonary vascular bed to hypoxia and hypercarbia. J Physiol (Lond) 211: 139–155

    CAS  Google Scholar 

  5. Bassenge E, Holtz J, Kolin A (1978) Autonomic control of venous capacity and total vascular compliance in the conscious dog. J Physiol (Lond) 284: 105–106 P

    Google Scholar 

  6. Bergofsky EH (1980) Humoral control of the pulmonary circulation. Ann Rev Physiol 42: 221–233

    Article  CAS  Google Scholar 

  7. Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation and hypertension. A reassessment and a hypothesis. Am J Physiol 232: C165–173

    PubMed  CAS  Google Scholar 

  8. Brown AM (1980) Receptors under pressure. An update on baroreceptors. Circ Res 46: 1–10

    PubMed  CAS  Google Scholar 

  9. Burton AC (1951) On the physical equilibrium of small blood vessels. Am J Physiol 164: 319–329

    PubMed  CAS  Google Scholar 

  10. Burton AC, Patel DJ (1958) Effect on pulmonary vascular resistance of inflation of the rabbit lung. J Appl Physiol 12: 239–246

    PubMed  CAS  Google Scholar 

  11. Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) The mechanics of the circulation. Oxford University Press, Oxford

    Google Scholar 

  12. Casteels R, Godfraind T, Ruegg JC (1979) Excitation-contraction coupling in smooth muscle. Elsevier/North Holland, Amsterdam

    Google Scholar 

  13. Coleridge HM, Coleridge JCG (1980) Cardiovascular afferents involved in regulation of peripheral vessels. Ann Rev Physiol 42: 413–427

    Article  CAS  Google Scholar 

  14. Cox RH (1978) Passive mechanics and connective tissue composition of canine arteries. Am J Physiol 234: H533–541

    PubMed  CAS  Google Scholar 

  15. Cox RH (1978) Regional variation of series elasticity in canine arterial smooth muscles. Am J Physiol 234: H542–551

    PubMed  CAS  Google Scholar 

  16. Crone C (1963) The permeability of capillaries in various organs as determined by the use of the ‘indicator diffusion’ method. Acta Physiol Scand 58: 292–305

    Article  PubMed  CAS  Google Scholar 

  17. Culver BH, Butler J (1980) Mechanical influences on the pulmonary microcirculation. Ann Rev Physiol 42: 187–198

    Article  CAS  Google Scholar 

  18. Donald DE, Shepherd JT (1980) Autonomic regulation of peripheral circulation. Ann Rev Physiol 42: 429–439

    Article  CAS  Google Scholar 

  19. Downing SE, Lee JC (1980) Nervous control of the pulmonary circulation. Ann Rev Physiol 42: 199–210

    Article  CAS  Google Scholar 

  20. Duke HN (1951) Pulmonary vasomotor responses of isolated perfused cat lung to anoxia and hypercapnia. Q J Exp Physiol 36:75 - 88

    Google Scholar 

  21. Duling BR, Berne RM (1971) Oxygen and the local regulation of blood flow: possible significance of longitudinal gradients in arterial blood oxygen tension. Circ Res 28,29 [Suppl I]: 65–69

    Google Scholar 

  22. Duling BR, Klitzman B (1980) Local control of microvascular function - role in tissue oxygen supply. Ann Rev Physiol 42: 373–382

    Article  CAS  Google Scholar 

  23. Editorial (1981) Artificial ventilation and the heart. Br Med J 283: 397–398

    Article  Google Scholar 

  24. Fishman AP (1980) Vasomotor regulation of the pulmonary circulation. Ann Rev Physiol 42: 211–220

    Article  CAS  Google Scholar 

  25. Folkow B, Mellander S (1964) Veins and venous tone. Am Heart J 68: 397–408

    Article  PubMed  CAS  Google Scholar 

  26. Fung YC, Sobin SS (1969) Theory of sheet flow in lung alveoli. J Appl Physiol 26: 472–488

    PubMed  CAS  Google Scholar 

  27. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32: 121–140

    Article  PubMed  CAS  Google Scholar 

  28. Gerova M, Gero J (1967) Effector mechanisms induced by baroreceptor stimulation. In: Baroreceptors and hypertension. Pergamon, Oxford

    Google Scholar 

  29. Gil J (1980) Organisation of the microcirculation of the lung. Ann Rev Physiol 42: 177–186

    Article  CAS  Google Scholar 

  30. Goldberg HS, Rabson J (1981) Control of cardiac output by systemic vessels: circulatory adjustments to acute and chronic respiratory failure and the effect of therapeutic interventions. Am J Cardiol 47: 696–702

    Article  PubMed  CAS  Google Scholar 

  31. Green HD (1944) Circulation: physical principles. In: Glasser O (ed) Medical physics, vol I. Year Book Publishers, Chicago

    Google Scholar 

  32. Green HD (1950) Circulatory system: physical principles. In: Glasser O (ed) Medical physics, vol II. Year Book Publishers, Chicago

    Google Scholar 

  33. Green JF (1979) Determinants of systemic blood flow. In: Guyton AC, Young DB (eds) Cardiovascular physiology III. International review of physiology, vol 18. University Park Press, Baltimore

    Google Scholar 

  34. Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35: 123–129

    PubMed  CAS  Google Scholar 

  35. Guyton AC, Lindsey AW, Abernethy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189: 609–615

    PubMed  CAS  Google Scholar 

  36. Guyton AC (1963) Circulatory physiology: cardiac output and its regulation. Saunders, Philadelphia

    Google Scholar 

  37. Guyton AC, Ross JM Jr, Carrier O, Walker JR (1964) Evidence for tissue oxygen demand as the major factor causing autoregulation. Circ Res 15 [Suppl I] 60–68

    PubMed  Google Scholar 

  38. Haddy FJ, Scott JB (1975) Metabolic factors in peripheral circulatory regulation. Fed Proc 34: 2006–2014

    PubMed  CAS  Google Scholar 

  39. Hainsworth R, Karim F (1974) A method for measurement of changes in abdominal vascular resistance. J Physiol (Lond) 238: 13–14 P

    Google Scholar 

  40. Hainsworth R, Karim F (1976) Responses of abdominal vascular capacitance in the anaesthetised dog to changes in carotid sinus pressure. J Physiol (Lond) 262: 659–677

    CAS  Google Scholar 

  41. Hainsworth R, Linden R] (1979) Reflex control of vascular capacitance. In: Guyton AC, Young DB (eds) Cardiovascular physiology III. International review of physiology, vol 18. University Park Press, Baltimore

    Google Scholar 

  42. Haldane JS, Priestley JG (1935) Respiration, 2nd edn, Oxford University Press, Oxford

    Google Scholar 

  43. Harkness MLR, Harkness RD, McDonald DA (1957) The collagen and elastin content of the arterial wall in the dog. Proc R Lond [Biol] 146: 541–551

    Article  CAS  Google Scholar 

  44. Hilton SM, Spyer KM (1980) Central nervous regulation of vascular resistance. Ann Rev Physiol 42: 399–411

    Article  CAS  Google Scholar 

  45. Iberall AS (1967) Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile characteristics. Math Biosci 1: 375–395

    Article  Google Scholar 

  46. Intaglietta M, Zweifach BW (1974) Microcirculatory basis of fluid exchange. Adv Biol Med Phys 15: 111–119

    PubMed  CAS  Google Scholar 

  47. Jardin F, Farcot J-C, Boisante L, Curien N, Margairaz A, Bourdarias J-P (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 302: 387–392

    Article  Google Scholar 

  48. Johansson B (1974) Determinants of vascular reactivity. Fed Proc 33: 121–126

    PubMed  CAS  Google Scholar 

  49. Johansson B (1978) Vascular smooth muscle biophysics. In: Kaley G, Altura BM (eds) Microcirculation II. University Park Press, Baltimore

    Google Scholar 

  50. Johansson B (1981) Vascular smooth muscle reactivity. Ann Rev Physiol 43: 359–370

    Article  CAS  Google Scholar 

  51. Karim F, Hainsworth R (1976) Responses of abdominal vascular capacitance to stimulation of splanchnic nerves. Am J Physiol 231: 434–440

    PubMed  CAS  Google Scholar 

  52. Kjellmer I (1964) The effect of exercise on the vascular bed of skeletal muscle. Acta Physiol Scand 62: 18–30

    Article  PubMed  CAS  Google Scholar 

  53. Kjellmer I (1965) On the competition between metabolic vasodilatation and neurogenic vasoconstriction in skeletal muscle. Acta Physiol Scand 63: 450–459

    Article  PubMed  CAS  Google Scholar 

  54. Kontos HA (1981) Regulation of the cerebral circulation. Ann Rev Physiol 43: 397–407

    Article  CAS  Google Scholar 

  55. Kolin A (1978) Methods of relative and absolute induction angiometry for observation of changes in vascular compliance in conscious subjects. J Physiol (Lond) 284: 109 P

    Google Scholar 

  56. Laver MB, Strauss HW, Pohost GM (1979) Right and left ventricular geometry: adjustments during acute respiratory failure. Crit Care Med 7: 509–519

    Article  PubMed  CAS  Google Scholar 

  57. Lundholm L, Mohme-Lundholm E (1966) Length of inactivated contractile elements, length-tension diagram, active state and tone of vascular smooth muscle. Acta Physiol Scand 68: 347–359

    Article  Google Scholar 

  58. McDonald DA (1974) The elastic properties of the arterial wall. In: Blood flow in arteries, 2nd edn. Edward Arnold, London

    Google Scholar 

  59. Malik AB, Kidd BSL (1973) Independent effects of changes in H+ and C02 concentrations on hypoxic pulmonary vasoconstriction. J Appl Phys 34: 318–324

    CAS  Google Scholar 

  60. Mancia G, Ferrari A, Gregorini L, et al. (1979) Control of blood pressure by carotid baroreceptors in human beings. Am J Cardiol 44: 895–902

    Article  PubMed  CAS  Google Scholar 

  61. Matthay RA, Wood LDH (1981) Cardiovascular function in respiratory failure. Introduction: The functionally integrated cardiovascular pulmonary unit. Am J Cardiol 47: 683–685

    Google Scholar 

  62. Mellander S (1960) Comparative studies on the adrenergic neurohumoral control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand 50 [Suppl 176] 1–86

    CAS  Google Scholar 

  63. Mellander S, Oberg B, Odelram H (1964) Vascular adjustments to increase transmural pressure in cat and man, with special reference to shift in capillary fluid transfer. Acta Physiol Scand 61: 34–48

    Article  PubMed  CAS  Google Scholar 

  64. Mellander S, Johansson B (1968) Control of resistance, exchange and capacitance function in the peripheral circulation. Pharmacol Rev 20: 117–196

    PubMed  CAS  Google Scholar 

  65. Miller ED (1981) The role of the renin-angiotensin-aldosterone system in circulatory control and in hyper-tension. Br J Anaesth 53: 711–718

    Article  PubMed  CAS  Google Scholar 

  66. Mintzner W, Goldberg HS (1975) Effects of epinephrine on resistive and compliant properties of the canine vasculature. J Appi Phys 39: 272–280

    Google Scholar 

  67. Nisell O (1948) Effects of oxygen and carbon dioxide on the circulation of isolated and perfused lungs of the cat. Acta Physiol Scand 16: 121–128

    Article  CAS  Google Scholar 

  68. Olsson RA (1981) Local factors regulating cardiac and skeletal muscle blood flow. Ann Rev Physiol 43: 385–395

    Article  CAS  Google Scholar 

  69. Parker JC, Guyton AC, Taylor AE (1979) Pulmonary transcapillary exchange and pulmonary oedema. In: Guyton AC, Young DB (eds) Cardiovascular physiology III. International review of physiology, vol 18. University Park Press, Baltimore

    Google Scholar 

  70. Patel DJ, Vaishnav RN (1977) Mechanical properties of arteries. In: Hwang NHC, Norman NA (ed) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore

    Google Scholar 

  71. Peterson LH, Jensen RE, Parnell J (1960) Mechanical properties of arteries in vivo. Circ Res 8: 622–639

    Google Scholar 

  72. Philipp T, Distler A, Cordes V (1978) Sympathetic nervous system and blood pressure control in essential hypertension. Lancet ii: 959–963

    Google Scholar 

  73. Prys-Roberts C, Green LT, Meloche R, Foèx P (1971) Studies of anaesthesia in relation to hypertension II: Haemodynamic consequences of induction and endotracheal intubation. Br J Anaesth 43: 531–547

    Google Scholar 

  74. Rashkind WJ, Lewis DH, Henderson LB, Heiman DF, Dietrick RB (1953) Venous return as affected by cardiac output and total peripheral resistance. Am J Physiol 175: 415–423

    Google Scholar 

  75. Rees PM, Sleight P, Robinson JL, Bonchek L, Doctor A (1978) Histology and ultrastructure of the carotid sinus in experimental hypertension. J Comp Neurol 181: 245–252

    Article  PubMed  CAS  Google Scholar 

  76. Renken EM (1968) Neurogenic factors in microcirculatory low flow states. In: Shepro D, Fulton GP (eds) Microcirculation as related to shock. Academic Press, New York

    Google Scholar 

  77. Rippe B, Kamiya A, Folkow B (1978) Simultaneous measurements of capillary diffusion and filtration exchange during shifts in filtration-absorption and at graded alterations in the capillary permeability surface area products ( PS ). Acta Physiol Scand 104: 318–336

    Google Scholar 

  78. Roach MR, Burton AC (1957) Reasons for the shape of the distensibility curves of arteries. Can J Biochem Physiol 681: 35–47

    Google Scholar 

  79. Robinson BF (1980) Assessment of the effects of drugs on the venous system in man. In: Shanks RG (ed) Methods in clinical pharmacology I. Cardiovascular system. Macmillan, London

    Google Scholar 

  80. Roddie IC, Wallace WFM (1980) Methods for the assessment of the effects of drugs on the arterial system in man. In: Shanks RG (ed) Methods in clinical pharmacology I. Cardiovascular system. Macmillan, London

    Google Scholar 

  81. Roseli S, Intaglietta M, Chisholm GM (1974) Adrenergic influence on isovolumetric capillary pressure in canine adipose tissue. Am J Physiol 227: 692–696

    Google Scholar 

  82. Rudolph AM, Yuan S (1966) Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest 45: 399–411

    Article  PubMed  CAS  Google Scholar 

  83. Rushmer RF (1970) Cardiovascular dynamics, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  84. Rutlen DL, Supple EW, Powell WJ (1981) Adrenergic regulation of total systemic distensibility. Am J Cardiol 47: 579–588

    Article  PubMed  CAS  Google Scholar 

  85. Rutlen DL, Supple EW, Powell WJ (1981) Beta adrenergic regulation of total systemic intravascular volume in the dog. Circ Res 48: 112–120

    PubMed  CAS  Google Scholar 

  86. Schmidt R, Kumada M, Sagawa K (1971) Cardiac output total peripheral resistance in the carotid sinus reflex. Am J Physiol 221: 480–487

    PubMed  CAS  Google Scholar 

  87. Shoukas AA, Sagawa K (1971) Total systemic vascular compliance measured as incremental volume-pressure ratio. Circ Res 28: 277–289

    PubMed  CAS  Google Scholar 

  88. Shoukas AA, Sagawa K (1973) Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ Res 33: 22–33

    PubMed  CAS  Google Scholar 

  89. Sigurdsson SB, Orlov RS, Hellstrand P, Johansson B (1981) Response to ions and vasoconstrictor agents and changes of potassium fluxes in vascular smooth muscle during hypoxia. Acta Physiol Scand 112: 455–462

    Article  PubMed  CAS  Google Scholar 

  90. Sjostrand T (1953) Volume and distribution of blood and their significance in regulating the circulation. Physiol Rev 33: 202–228

    PubMed  CAS  Google Scholar 

  91. Starling EH (1896) On the absorption of fluids from

    Google Scholar 

  92. connection tissue spaces. J Physiol (Lond) 19:312–326

    Google Scholar 

  93. Starling EH (1897) Some points in the pathology of heart disease. Lancet i: 652–655

    Google Scholar 

  94. Starling EH (1909) The fluids of the body. WT Keener, Chicago

    Google Scholar 

  95. Staub NC (1974) Pulmonary oedema. Physiol Rev 54: 678–811

    Article  PubMed  CAS  Google Scholar 

  96. Watt TB, Burrus CS (1976) Arterial pressure contour analysis for estimating human vascular properties. J Appl Phys 40: 171–176

    Google Scholar 

  97. Weber KT, Janicki JS, Shroff S, Fishman AP (1981) Contractile mechanics and interactions of the right and left ventricles. Am J Cardiol 47: 686–695

    Article  PubMed  CAS  Google Scholar 

  98. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures. J Appl Phys 19: 713–724

    CAS  Google Scholar 

  99. Westfall T (1980) Neuroeffector mechanisms. Ann Rev Physiol 42: 383–397

    Article  CAS  Google Scholar 

  100. Widdicombe JG, Sterling GM (1970) The autonomic nervous system and breathing. Arch Intern Med 126: 311–329

    Article  PubMed  CAS  Google Scholar 

  101. Wyatt DG (1968) The electromagnetic blood flowmeter. J Sci Instr (Series 2 ) 1: 1146

    Google Scholar 

  102. Wyatt DG (1977) Theory, design, and use of electromagnetic flowmeters. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore

    Google Scholar 

  103. Zanchetti A (1979) An overview of cardiovascular reflexes in hypertension. Am J Cardiol 44: 912–918

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cutfield, G.R. (1992). The Systemic and Pulmonary Circulations. In: Tinker, J., Zapol, W.M. (eds) Care of the Critically Ill Patient. Springer, London. https://doi.org/10.1007/978-1-4471-3400-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3400-8_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3402-2

  • Online ISBN: 978-1-4471-3400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics