Advertisement

Comparing Two Different Approaches to Products in Abstract Relation Algebra

  • R. Berghammer
  • A. Haeberer
  • G. Schmidt
  • P. Veloso
Part of the Workshops in Computing book series (WORKSHOPS COMP.)

Abstract

During the development of relation algebra as a formal programming tool, the need of some form of “categorical product” of relations became apparent, whether as a type or as an operation. Two approaches arose in the late 70’s and the early 80’s which will be referred here as the “Munich approach” (see, e.g., [18, 7]) and the “Rio approach” (see, e.g., [13, 12, 22]).

Keywords

Direct Product Boolean Algebra Relation Algebra Bijective Mapping Partial Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. C. Backhouse, P. J. DE Bruin, P. Hoogendijk, G. Malcolm, J. Van Der Woude: Polynomial relators. Computing Science Notes, Dept. Mathematics and Computing Science, Eindhoven Univ. of Technology, May 1991Google Scholar
  2. [2]
    G. Baum, A. Haeberer, P. Veloso: On the Representability of the Abstract Relational Algebra, IGPL Newsletter 1, 3 (September 1992) European Foundation for Logic, Language, and Information, Interest Group on Programming LogicGoogle Scholar
  3. [3]
    A. R. Bednarek, S. Ulam: Projective algebra and the calculus of relations. J. Symb. Logic 43, 56–64 (1978)CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    R. Berghammer, G. Schmidt: A relational view on gotos and dynamic logic. In: Schneider, H.J., Göttler, H. (eds.): Proc. Conf. Graphtheoret. Concepts in Corn-put. Sci., June 16–18, 1982, Neunkirchen a. Br., 13–24, Hanser 1982Google Scholar
  5. [5]
    R. Berghammer, G. Schmidt: The RELVTEW-System. Notes to a system presentation. In: Choffrut, C., Jantzen, M. (Eds.): Proc. 8th Ann. Symp. Theo-ret. Aspects of Comput. Sci. Lect. Notes Comput. Sci. 480, 535–536, Springer 1991Google Scholar
  6. [6]
    R. Berghammer, G. Schmidt, H. Zierer: Symmetrie quotients and domain constructions. Inform. Proc. Letters 33, 3, 163–168 (1989/90)CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    R. Berghammer, H. Zierer: Relational algebraic semantics of deterministic and nondeterministic programs. Theoret. Comput. Sci. 43, 123–147 (1986)CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    R. Brethauer: Ein Formelmanipulationssystem zur computergestützten Beweisführung in der Relationenalgebra, Univ. der Bundeswehr München, Diplomarb. (1991)Google Scholar
  9. [9]
    L. Chin, A. Tarski: Distributive and modular laws in the arithmetic of relation algebras. University of California Publications in Mathematics (new series) 1 (1951)Google Scholar
  10. [10]
    W. P. De roever: Recursive program schemes: semantics and proof theory. Ph. D.-Thesis, Math. Centrum Tracts, Amsterdam, 1974Google Scholar
  11. [11]
    C. J. Everett, S. Ulam: Projective algebra I. Amer. J. Math. 68, 77–88 (1946)MATHMathSciNetGoogle Scholar
  12. [12]
    A. Haeberer, P. Veloso: Partial relations for program derivation: Adequacy, Inevitability, and Expressiveness. In: Möller, B. (ed.): Constructing programs from specifications. Proc. IFIP TC 2/WG 2.1, Pacific Grove, USA, North-Holland 1991Google Scholar
  13. [13]
    A. Haeberer, P. Veloso, P. Elustondo: Towards a relational calculus for software construction. Doc. 640-BUR-5, 41st IFIP WG 2.1, Chester, GB (1990)Google Scholar
  14. [14]
    B. Jónsson, A. Tarski: Boolean algebras with operators, Part II. Amer. J. Math. 74, 127–167 (1952)MATHGoogle Scholar
  15. [15]
    R. Maddux: On the derivation of identities involving projection functions. Draft paper July 29, 1993Google Scholar
  16. [16]
    G. Schmidt, T. Ströhlein: Relation and Graphs—Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoret. Comput. Sci., Springer 1993Google Scholar
  17. [17]
    G. Schmidt, T. Ströhlein: Relation algebras: Concept of points and representability, Discrete Math. 54, 83–92 (1985)CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    G. Schmidt: Programs as partial graphs I: Flow equivalence and correctness. Theoret. Comput. Sci. 15, 1–25 (1981)CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    A. Tarski: On the calculus of relations. J. Symb. Logic 6, 73–89 (1941)CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    A. Tarski, S. GIVANT: A formalization of set theory without variables. Amer. Math. Soc. Coll. Publ. 41, Providence, Rhode Island, 1987Google Scholar
  21. [21]
    P. Veloso, A. Haeberer: A unitary relational algebra for classical first-order logic. Bull, of the Section on Logic of the Polish Academy of Sciences 20, 52–62 (1991)MathSciNetGoogle Scholar
  22. [22]
    P. Veloso, A. Haeberer, G. Baum: Formal program construction within an extended calculus of binary relations. J. Symb. Comp. (to appear)Google Scholar
  23. [23]
    H. Zierer: Relation algebraic domain constructions. Theoret. Comput. Sci. 87, 163–188 (1991)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© British Computer Society 1994

Authors and Affiliations

  • R. Berghammer
    • 2
  • A. Haeberer
    • 1
  • G. Schmidt
    • 2
  • P. Veloso
    • 1
  1. 1.Departamento de InformáticaPUC, Rio de JaneiroBrazil
  2. 2.Fakultät für Informatik, Bundeswehr-Univ.NeubibergGermany

Personalised recommendations