Specific Immunotherapeutic Strategies: Lessons from Myelin Basic Protein-Induced Experimental Allergic Encephalomyelitis

  • Robert B. Bell
  • Lawrence Steinman
Part of the Clinical Medicine and the Nervous System book series (CLIN.MED.NERV.)


The progress of research on the pathogenesis and treatment of multiple sclerosis (MS), the principal human demyelinating disease of the central nervous system (CNS), has intensified in the past 3 years. In part, this is due to the application of advances in molecular biology, like polymerase chain reaction (PCR), and to developments in cellular immunology, like technology for the growth of T-cell clones. Many lessons that have been learned in an animal model of CNS demyelinating disease, experimental allergic encephalomyelitis (EAE), have been verified in the human disease MS. Indeed, certain successful approaches for treatment of EAE are being attempted in MS at the present time.


Arthritis Tyrosine Recombination Proline Lysine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acha-Orbea H, Mitchell DJ, Timmermann L et al. (1988) Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54: 263–273PubMedCrossRefGoogle Scholar
  2. Acha-Orbea H, Steinman L, McDevitt HO (1989) T cell receptors in murine autoimmune diseases. Annu Rev Immunol 7: 371–405PubMedCrossRefGoogle Scholar
  3. Bjorkman PJ, Saper MO, Samraoui B, Bennett WO, Strominger J, Wiley DC (1987a) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512PubMedCrossRefGoogle Scholar
  4. Bjorkman PJ, Saper MA, Samroui B, Bennett WS, Strominger JI, Wiley DC (1987b) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512–518PubMedCrossRefGoogle Scholar
  5. Blackman M, Kappler J, Marrack P (1990) The role of T cell receptor on positive and negative selection of developing T cells. Science 248: 1335–1341PubMedCrossRefGoogle Scholar
  6. DeLisi C, Berzofsky JA (1985) T cell antigenic sites tend to be amphipathic structures. Proc Natl Acad Sci USA 82: 7048–7052PubMedCrossRefGoogle Scholar
  7. Hohlfeld R (1989) Neurological autoimmune disease and the trimolecular complex of T-lymphocytes. Ann Neurol 25: 531–538PubMedCrossRefGoogle Scholar
  8. Heber-Katz E, Acha-Orbea H (1989) The V-region disease hypothesis: Evidence from autoimmune encephalomyelitis. Immunol Today 10: 164–169Google Scholar
  9. Howell MD, Winters ST, Olee T, Powell HC, Carlo DJ, Brostoff SW (1989) Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 246: 668–670PubMedCrossRefGoogle Scholar
  10. Kappler JW, Roehm N, Marrack P (1987a) T cell tolerance by clonal elimination in the thymus. Cell 49: 273–280PubMedCrossRefGoogle Scholar
  11. Kappler JW, Wade T, White J et al. (1987b) A T cell receptor Vß segment that imparts reactivity to a class II major histocompatibility complex product. Cell 49: 263–271PubMedCrossRefGoogle Scholar
  12. Kono DH, Urban JL, Horvath SJ, Ando DG, Saavedra RA, Hood L (1988) Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med 168: 213–227PubMedCrossRefGoogle Scholar
  13. Kronenberg M, Siu G, Hood L, Shastri N (1986) The molecular genetics of the T cell antigen receptor and T cell antigen recognition. Annu Rev Immunol 4: 529–591PubMedCrossRefGoogle Scholar
  14. Kumar V, Kono DH, Urban JL, Hood LE (1989) The T cell receptor repertoire and autoimmune diseases. Annu Rev Immunol 7: 657–682PubMedCrossRefGoogle Scholar
  15. Lider O, Reshef T, Beraud E, Ben-Nun A, Cohen IR (1988) Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 239: 181–183PubMedCrossRefGoogle Scholar
  16. Martin R, Jaraquemada D, Flerlage M et al. (1990) Fine specificity and HLA restriction of MBPspecific cytotoxic T cell lines from MS patients and healthy individuals. J Immunol 145: 540–548PubMedGoogle Scholar
  17. Martin R, Howell MD, Jaraquemada D et al. (1991) A myelin basic protein peptide is recognized by cytotoxic T-cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173: 19–24PubMedCrossRefGoogle Scholar
  18. McDevitt HO, Wraith DC, Smilek DE, Lundberg AS, Steinman L (1989) Evolution, function and utilization of major histocompatibility complex polymorphism in autoimmune disease. In: Cold Spring Harbor symposia on quantitative biology, vol. LIV, Immunological recognition. Cold Spring Harbor Press, pp 853–857Google Scholar
  19. McFarland HF, Dhib-Jalbut S (1989) Multiple sclerosis: Possible immunological mechanisms. Clin Immunol Immunopath 50: S96–5105CrossRefGoogle Scholar
  20. Morel PA, Livingstone AM, Fathman CG (1987) Correlation of T cell receptor Vß gene family with MHC restriction. J Exp Med 166: 583–588PubMedCrossRefGoogle Scholar
  21. Oksenberg JR, Stuart S, Begovich AB et al. (1990) Limited heterogeneity or rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature 345: 344–346PubMedCrossRefGoogle Scholar
  22. Ota K, Matsui M, Milford E, Mackin G, Weiner HL, Haller DA (1990) T cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346: 183–187PubMedCrossRefGoogle Scholar
  23. Padula SJ, Lingenheld EG, Stabach PR, Clou CJ, Kono DH, Clark RB (1991) Identification of encephalitogenic Vß4 bearing T cells in SJL mice. J Immunol 146: 879–883PubMedGoogle Scholar
  24. Paterson PY (1960) Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 111: 119–135PubMedCrossRefGoogle Scholar
  25. Powell MB, Mitchell D, Lederman J et al. (1990) Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein. Int Immunol 2: 539–544PubMedCrossRefGoogle Scholar
  26. Reader AT, Amason BG (1985) Immunology of multiple sclerosis. In: Vinken PJ, Bruyn GW, Klawans HC (eds) Handbook of clinical neurology. Elsevier, Amsterdam, 47: 337–396Google Scholar
  27. Rothbard JB, Taylor WR (1988) A sequence pattern common to T cell epitopes. EMBO J 7: 93–100PubMedGoogle Scholar
  28. Sakai K, Sinha AA, Mitchell DJ et al. (1988) Involvement of distinct murine T-cell receptors in the autoimmune encephalitogenic response to nested epitopes of myelin basic protein. Proc Natl Acad Sci USA 85: 8608–8612PubMedCrossRefGoogle Scholar
  29. Sakai K, Mitchell D J Hodgkinson SJ, Zamvil S.S, Rothbard JB, Steinman L (1989) Prevention of experimental encephalomyelitis with peptides blocking T cell-MHC interaction. Proc Natl Acad Sci USA 86: 9470–9474Google Scholar
  30. Sinha AA, Brautbar C, Szafer F et al. (1988) A newly characterized HLA DQ beta allele associated with pemphigus vulgaris. Science 239: 1026–1029PubMedCrossRefGoogle Scholar
  31. Sriram S, Steinman L (1983) Anti I-A antibody suppresses active encephalomyelitis: treatment model for diseases linked to IR genes. J Exp Med 158: 1362–1367PubMedCrossRefGoogle Scholar
  32. Todd JA, Bell JI, McDevitt HO (1987) HLA-DQ3 genes contribute to susceptibility and resistance to insulin dependent diabetes mellitus. Nature 329: 599–604PubMedCrossRefGoogle Scholar
  33. Todd JA, Acha-Orbea H, Bell JI et al. (1988) A molecular basis for MHC class II-associated autoimmunity. Science 240: 1003–1009PubMedCrossRefGoogle Scholar
  34. Urban JL, Kumar V, Kono DH et al. (1988) Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell 54: 577–592PubMedCrossRefGoogle Scholar
  35. Urban J, Horvath S, Hood L (1989) Autoimmune T cells: immune recognition of normal and variant peptide epitopes and peptide-based therapy. Cell 59: 257–271PubMedCrossRefGoogle Scholar
  36. Vandenbark AA, Hashim G, Offner H (1989) Immunization with a synthetic T-cell receptor V-re gion peptide protects against experimental autoimmune encephalomyelitis. Nature 341: 541–544PubMedCrossRefGoogle Scholar
  37. Waldor MK, Sriram S, Hardy R et al. (1985) Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227: 415–417PubMedCrossRefGoogle Scholar
  38. Wraith DC, Smilek DE, Mitchell DJ, Steinman L, McDevitt HO (1989a) Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59: 247–255PubMedCrossRefGoogle Scholar
  39. Wraith DC, McDevitt HO, Steinman L, Acha-Orbea H (1989b) T-cell recognition as the target for immune intervention in autoimmune disease. Cell 57: 709–715PubMedCrossRefGoogle Scholar
  40. Wucherpfenning K, Ota K, Endo N et al. (1990) Shared human T cell receptor Vß usage to immunodominant regions of myelin basic protein. Science 248: 1016–1019CrossRefGoogle Scholar
  41. Zaller D, Osman G, Kanagawa O, Hood L (1990) Prevention and treatment of murine EAE with TcR Vß-specific antibodies. J Exp Med 171: 1943–1955PubMedCrossRefGoogle Scholar
  42. Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8: 579–621PubMedCrossRefGoogle Scholar
  43. Zamvil SS, Nelson PA, Mitchell DJ, Knobler RL, Fritz RB, Steinman L (1985) Encephalitogenic T cell clones specific for myelin basic protein. An unusual bias in antigen recognition. J Exp Med 162: 2107–2124Google Scholar
  44. Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB (1986) T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324: 258–260PubMedCrossRefGoogle Scholar
  45. Zamvil SS, Mitchell DJ, Moore AC et al. (1987) T cell specificity for class II ( I-A) and the encephalitogenic N-terminal epitope of the autoantigen myelin basic protein. J Immunol 139: 1075–1079Google Scholar
  46. Zamvil SS, Mitchell DJ, Powell MB, Sakai K, Rothbard JB, Steinman L (1988a) Multiple discrete encephalitogenic epitopes of the autoantigen myelin basic protein include a determinant for I-E class II-restricted T cells. J Exp Med 168: 1181–1186PubMedCrossRefGoogle Scholar
  47. Zamvil SS, Mitchell DJ, Lee NE et al. (1988b) Predominant expression of a T cell receptor V beta gene subfamily in autoimmune encephalomyelitis [published erratum appears in J Exp Med 1988 Jul 1; 168(1):455]. J Exp Med 167: 1586–1596Google Scholar

Copyright information

© Springer-Verlag London Limited 1992

Authors and Affiliations

  • Robert B. Bell
  • Lawrence Steinman

There are no affiliations available

Personalised recommendations