The Nature of Delay-Insensitive Computing

  • Martin Rem
Part of the Workshops in Computing book series (WORKSHOPS COMP.)


Delay-insensitive systems are systems whose correct functioning does not depend on delay assumptions. In this paper a gradual introduction to delay-insensitivity is given, illustrated by many examples. Precise definitions are given of delay-insensitivity, decomposition (or refinement), and speed-independence. Recent results of the associated theory are touched upon.


Reachable State Current Trace Clock Period Input Symbol Combinational Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Clifford Barney. Logic designers toss out the clock. Electronics Dec. 9, 1985, 42–45Google Scholar
  2. [2]
    J.A. Brzozowski and J.C. Ebergen. On the Delay-Sensitivity of Gate Networks. Computing Science Note 90/5, TU Eindhoven, 1990Google Scholar
  3. [3]
    T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter circuits. IEEE Transactions on Computers,Vol. C-22, 1973, 421–422CrossRefGoogle Scholar
  4. [4]
    W. Chen, J.T. Udding, and T. Verhoeff. Networks of communicating processes and their (de)-composition in The Mathematics of Program Construction (J.L.A. van de Snepscheut, ed.). LNCS 375, Springer-Verlag, 1989, 174–176Google Scholar
  5. [5]
    J.C. Ebergen. Translating Programs into Delay-Insensitive Circuits. CWI Tract 56, CWI, Amsterdam, 1989MATHGoogle Scholar
  6. [6]
    Mark B. Josephs. Receptive Process Theory. Computing Science Note 90/8, TU Eindhoven, 1990Google Scholar
  7. [7]
    Anne Kaldewaij. A Formalism for Concurrent Processes. Ph.D. Thesis, TU Eindhoven, 1986MATHGoogle Scholar
  8. [8]
    Alain J. Martin. Compiling communicating processes into delay-insensitive circuits. Distributed Computing, 1,1986, 247–260CrossRefGoogle Scholar
  9. [9]
    Alain J. Martin. The limitations of delay-insensitivity in asynchronous circuits in Beauty Is Our Business (W.H.J. Feijen et al., eds.) Springer-Verlag, 1990, 302–311Google Scholar
  10. [10]
    R.E. Miller. Switching Theory, Vol. 2, Wiley, 1965Google Scholar
  11. [11]
    Charles E. Molnar, Ting-Pien Fang and Frederick U. Rosenberger. Synthesis of delay-insensitive modules in 1985 Chapel Hill Conference on Very Large Scale Integration (Henry Fuchs, ed.) Computer Science Press, 1985, 67–86Google Scholar
  12. [12]
    Martin Rem. Concurrent computations and VLSI circuits in Control Flow and Data Flow (M. Broy, ed.) Springer-Verlag, 1985, 399–437Google Scholar
  13. [13]
    Science and the citizen. Scientific American, 228, April 1973, 43–44CrossRefGoogle Scholar
  14. [14]
    C.L. Seitz. System timing in Carver Mead and Lynn Conway, Introduction to VLSI Systems. Addison-Wesley, 1980, 218–262Google Scholar
  15. [15]
    I.E. Sutherland. Micropipelines. Commun. ACM, 32, 1989, 720–738CrossRefGoogle Scholar
  16. [16]
    Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits and systems. Distributed Computing, 1,1986, 197–204CrossRefGoogle Scholar
  17. [17]
    Jan Tijmen Udding and Tom Verhoeff. The Mathematics of Directed Specifications. Technical Report WUCS 88–20, Washington University, 1988Google Scholar
  18. [18]
    C.H. (Kees) van Berkel and Ronald W.J.J. Saeijs. Compilation of communicating processes into delay-insensitive circuits in 1988 IEEE Int. Conf. on Computer Design, IEEE Computer Society Press, 1988, 157–162Google Scholar
  19. [19]
    Jan L.A. van de Snepscheut. Trace Theory and VLSI Design. LNCS 200, Springer-Verlag, 1985MATHGoogle Scholar
  20. [20]
    Tom Verhoeff. Delay-insensitive codes—an overview. Distributed Computing, 3, 1988, 1–8CrossRefMATHGoogle Scholar
  21. [21]
    Alexandre Yakovlev. Designing self-timed systems. VLSI Systems Design, September 1985, 70–90Google Scholar

Copyright information

© British Computer Society 1991

Authors and Affiliations

  • Martin Rem
    • 1
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations