Skip to main content

Hierarchies in the Cerebellum

  • Chapter
Book cover Hierarchies in Neurology

Part of the book series: Clinical Medicine and the Nervous System ((CLIN.MED.NERV.))

  • 98 Accesses

Abstract

I hope to show that the cerebellum is extremely important in transforming visual information in order to control motor output. Clearly this is as relevant to ocular motor control described in chapter 17, as it is to limb movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker J, Gibson A, Glickstein M, Stein JF (1976) Visual cells in the pontine nucleus of the cat. J Physiol (Lond) 252: 415–433

    Google Scholar 

  • Brodal P (1972) The corticopontine projection from visual cortex in the cat. Brain Res 39:297–335

    Article  PubMed  CAS  Google Scholar 

  • Brookes VB, Kovsloskaya IB, Atkin A, Horvath FE, Uino M (1973) Effect of cooling dentate nucleus on tracking performance in monkeys. J Neurophysiol 36: 974–995

    Google Scholar 

  • Cajal R (1909) Histologie du système nerveux. C.S.I.C., Madrid

    Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gellman R, Gibson AR, Houk JC (1985) Inferior olive neurones in awake cat. Detection of intact and passive body displacement. J Neurophysiol 54: 40–60

    PubMed  CAS  Google Scholar 

  • Gibson A, Mower G, Stein JS (1980) The projection of visual cells in the pons to the cerebellum. J Neurophysiol 43: 355–367

    PubMed  Google Scholar 

  • Gilbert PFC, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128:309–328

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M (1972) Brain mechanisms in reaction time. Brain Res 40: 33–37

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, King R, Stein J (1972) Visual input to the pontine nuclei. Science 178: 1110–1111

    Article  PubMed  CAS  Google Scholar 

  • Gonshor A, Melville Jones G (1976) Extreme vestibulo ocular adaptation induced by prolonged optical reversal of vision. J Physiol (Lond) 256: 381–414

    Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes on Purkinje cells in the cerebellum. J Physiol 133: 520–547

    PubMed  CAS  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62: 1–30

    Article  Google Scholar 

  • Hore J, Vilis T (1984) Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. J Neurophysiol 51: 1137–1148

    PubMed  CAS  Google Scholar 

  • Horvat DM, Stein JF (1985) Role of different cerebellar regions in visuomotor control. Neurosci Lett 321: 11

    Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Kemp JM, Powell TPS (1970) The connexions of the striatum and globus pallidus: synthesis and speculation. Philos Trans R Soc Bioll 262: 441–457

    Article  Google Scholar 

  • Llinas RR, Simpson JI (1981) Cerebellar control of movement. In: Towe AL, Luschei FS (eds) Handbook of behavioral neurobiology, vol 5. Motor coordination. Plenum, New York, pp 231–302

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202: 437–470

    CAS  Google Scholar 

  • Mackay WA, Murphy JT (1979) Cerebellar modulation of reflex gain. Prog Neurobiol 13: 361–417

    Article  PubMed  CAS  Google Scholar 

  • McCormack DA, Thompson RF (1984) Cerebellum-essential involvement in the classically conditioned eyelid response. Science 223: 296–299

    Article  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1985) Visuomotor tracking with delayed visual feedback. Neuroscience 16: 511–520

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir, DJ, Stein JF (1986) Manual tracking of visual targets by trained monkeys. Behav Brain Res 20: 185–201

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1987) Visuomotor tracking during reversible inactivation of the cerebellum. Exp Brain Res 65: 455–464

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long term adaptive changes in primate vestibulocular reflex. III Electrophysiological observations in flocculus of normal monkey. J Neurophysiol 43: 1437–1476

    PubMed  CAS  Google Scholar 

  • Moruzzi G (1950) Problems in cerebellar physiology. Thomas, Springfield, Illinois

    Google Scholar 

  • Mower G, Gibson A, Robinson F, Stein JF, Glickstein M (1982) Visual ponts cerebellar projections in the cat. J Neurophysiol 43: 355

    Google Scholar 

  • Myers RE, Sperry RW, McCurdy NM (1962) Neural mechanisms in visual guidance of limb movement. Arch Neurol 7: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM (1976) Adapting reflexes controlling human posture. Exp Brain Res 26: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Kuypers H (1969) Cortico-cortical connexions in the rhesus monkey. Brain Res 13: 13–36

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz A, Llinas R (1979) Brain modelling by tensor network theory. The cerebellum. Neuroscience 4: 323–348

    Article  PubMed  CAS  Google Scholar 

  • Stark L (1968) Neurological control systems. Plenum, New York

    Google Scholar 

  • Stein JF (1978) Long loop motor control in monkeys. In: Desmedt J (ed) Cerebral motor control in man: long loop mechanisms. Karger, Basel, pp 107–122

    Google Scholar 

  • Stein JF (1985) The control of movement. In: Coen C (ed) Functions of the brain. Oxford University Press, Oxford, pp 67–97

    Google Scholar 

  • Stein JF, Wattam Bell J (1975) The effect of cooling n. interpositus in rhesus monkeys on the tracking of a visual target. J Physiol (Lond) 252: 47 P

    Google Scholar 

  • Takemori S, Cohen B (1972) Visual suppression of vestibular nystagamus. Brain Res 72: 203–224

    Article  Google Scholar 

  • Taylor J (ed) (1931/32) Selected writings of John Hughlings Jackson. Hodder and Stoughton, London. Reprinted (1958) Basic Books, New York

    Google Scholar 

  • Thach WT (1968) Discharge of cerebellar purkinje and nuclear cells during rapidly alternating arm movements in the monkey. J Neurophysiol 31: 785–797

    PubMed  CAS  Google Scholar 

  • Wise SP, Evarts EV (1985) The motor system in neurobiology. Elsevier, Oxford

    Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit — lesions of the cerebellar cortex. Exp Brain Res 60: 99–113

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stein, J.F. (1989). Hierarchies in the Cerebellum. In: Kennard, C., Swash, M. (eds) Hierarchies in Neurology. Clinical Medicine and the Nervous System. Springer, London. https://doi.org/10.1007/978-1-4471-3147-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3147-2_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3149-6

  • Online ISBN: 978-1-4471-3147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics