Role of the Central Nervous System in Cardiovascular Regulation

  • K. L. Barnes
  • C. M. Ferrario
Part of the Clinical Medicine and the Nervous System book series (CLIN.MED.NERV.)

Abstract

Although the participation of the central nervous system (CNS) in the regulation of cardiovascular function has been known for more than a century, the pervasive significance of neural mechanisms has only been recognized quite recently. In addition to the well-established role of the CNS in regulating the balance of sympathetic and parasympathetic outflow and controlling cardiovascular reflexes, it is now becoming clear that endocrine mechanisms are integrated with neural factors into a complex system of neuroendocrine control of cardiovascular regulation. These findings are being combined with pharmaco logical, molecular biological, and clinical areas of investigation into an emergent discipline of “cardiovascular neurobiology.” This chapter focuses selectively upon evidence for the importance of medullary pathways in CNS cardiovascular regulation, particularly the afferent functions of the area postrema and nucleus tractus solitarii, the efferent mechanisms of the ventrolateral medulla, and the significance of these regions for neuroendocrine integration.

Keywords

Dopamine Serotonin Angiotensin Norepinephrine Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud FM (1982) The sympathetic system in hypertension. Hypertension 4 [Suppl II]: II-208–II-225Google Scholar
  2. Alexander RS (1945) The effects of blood flow and anoxia on spinal cardiovascular centers. Am J Physiol 143: 698–708Google Scholar
  3. Amendt J, Czachurski J, Dembowski K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1: 103–117PubMedCrossRefGoogle Scholar
  4. Backman SB, Henry JL (1984) Effects of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the upper thoracic intermediolateral nucleus of the cat. Can J Physiol Pharmâcol 62: 248–251PubMedCrossRefGoogle Scholar
  5. Bard P (1960) Anatomical organization of the central nervous system in relation to control of the heart and blood vessels. Physiol Rev 40 [Suppl 4]: 3–26Google Scholar
  6. Barnes KL, Averill DB, Ferrario DM (1984) Contribution of vasopressin to hypertension after solitary tract lesioning in the dog. J Hypertension 2 [Suppl 3]: 33–36Google Scholar
  7. Barnes KL, Ferrario CM (1981) Anatomical and physiological characterization of the sympathofaei-litative area postrema pathways in the dog. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven, New York, pp 25–36Google Scholar
  8. Barnes KL, Ferrario CM (1984) Localization within the dog’s brain stem of the area postrema pressor pathway. Hypertension 6: 482–488PubMedGoogle Scholar
  9. Barnes KL, Ferrario CM, Chernicky CL, Brosnihan KB (1984) Participation of the area postrema in cardiovascular control in the dog. Fed Proc 43: 2959–2962PubMedGoogle Scholar
  10. Barnes KL, Ferrario CM, Conomy JP (1979) Comparison of the hemodynamic changes produced by electrical stimulation of the area postrema and NTS in the dog. Circ Res 45: 136–143PubMedGoogle Scholar
  11. Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14: 153–158PubMedCrossRefGoogle Scholar
  12. Biegon A, Terlou M, Voorhuis TD, deKloet ER (1984) Arginine-vasopressin binding sites in rat brain: a quantitative autoradiographic study. Neurosci Lett 44: 229–234PubMedCrossRefGoogle Scholar
  13. Blessing WW, West MJ, Chalmers J (1981) Hypertension, bradycardia and pulmonary edema in the conscious rabbit after brain stem lesions coinciding with the A1 group of catecholamine neurons. Circ Res 49: 949–958PubMedGoogle Scholar
  14. Borison HL, Brizzee KR (1951) Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc Soc Exp Biol Med 77: 38–42PubMedGoogle Scholar
  15. Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology. Raven, New York, pp 249–292Google Scholar
  16. Brooks C Me, Koizumi K, Sato A (eds) (1979) Integrative functions of the autonomic nervous system. Elsevier, New YorkGoogle Scholar
  17. Brosnihan KB, Ferrario CM (1982) Central mediation of adrenal catecholamine release by angiotensin II in normal and sodium depleted dog. Proc 64th annual meeting of the Endocrine Society, p 11Google Scholar
  18. Brosnihan KB, Ferrario CM (1984) Central regulation of renin release. In: Guthrie GP Jr, Kotchen TA (eds) Hypertension and the brain. Futura, Mt. Kisco, NY, pp 83–112Google Scholar
  19. Brown DL, Guyenet PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247: R1009–R1016PubMedGoogle Scholar
  20. Bumpus FM, Ferrario CM (1984) Extrarenal renin angiotensin system: comments on its occurrence and cardiovascular role. In: Villarreal H, Sambhi M (eds) Topics in pathophysiology of hypertension. Martinus Nijhoff, Boston, pp 407–416CrossRefGoogle Scholar
  21. Campbell DJ, Beuhnik J, Menard J, Corvol P (1984) Identity of angiotensinogen precursors of rat brain and liver. Nature 308: 206–208PubMedCrossRefGoogle Scholar
  22. Caverson MM, Ciriello J, Calaresu FR (1984) Chemoreceptor and baroreceptor inputs to ventrolateral medullary neurons. Am J Physiol 247: R872–R879PubMedGoogle Scholar
  23. Charlton CG, Heike CJ (1985) Autoradiographic localization and characterization of spinal cord substance P binding sites: high densities in sensory, autonomic, phrenic, and Onuf s motor nuclei. J Neurosci 5: 1653–1661PubMedGoogle Scholar
  24. Chemicky CL, Barnes KL, Conomy JP, Ferrario CM (1980) A morphological characterization of the canine area postrema. Neurosci Lett 20: 37–43CrossRefGoogle Scholar
  25. Chemicky CL, Barnes KL, Ferrario CM (1983) Brain stem distribution of the carotid sinus nerve in the dog. Neurosci Abstr 9: 1158Google Scholar
  26. Chemicky CL, Bames KL, Ferrario CM, Conomy JP (1984) Afferent projections of the cervical vagus and nodose ganglion in the dog. Brain Res Bull 13: 401–411CrossRefGoogle Scholar
  27. Ciriello J, Hrycyshyn AW, Calaresu FR (1981) Horseradish peroxidase study of brain stem projections of carotid sinus and aortic depressor nerves in the cat. J Auton Nerv Syst 4: 43–61PubMedCrossRefGoogle Scholar
  28. Coote JH, Macleod VN, Fleetwood-Walker S, Gilbey MP (1981) The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamine. Brain Res 215: 135–145PubMedCrossRefGoogle Scholar
  29. Cowley AW Jr, Monos E, Guyton AC (1974) Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res 34: 505–514PubMedGoogle Scholar
  30. Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62 [Suppl 232]: 1–55Google Scholar
  31. Dahlstrom A, Fuxe K (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron system. Acta Physiol Scand 64 [Suppl 247]: 5–36Google Scholar
  32. Davies R, Kalia M (1981) Carotid sinus nerve projections to the brain stem in the cat. Brain Res Bull 6: 531–544PubMedCrossRefGoogle Scholar
  33. DeJong W, Nijkamp FP (1976) Centrally induced hypotension and bradycardia after administration of α-methylnoradrenaline into the area of the nucleus tractus solitarii of the rat. Br J Pharmacol 58: 593–598Google Scholar
  34. Dittmar C (1870) Ein neuer Beweis fur die Reizbarkeit der centripetalen Fasern des Ruckenmarks. Ber Sachs Ges (Akad) Wiss 22: 18–48Google Scholar
  35. Diz DI, Bames KL, Ferrario CM (1984) Hypotensive actions of angiotensin II microinjected into the dorsal motor nucleus of the vagus. J Hypertension 2 [Suppl 3]: 53–56Google Scholar
  36. Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32: 584–593PubMedGoogle Scholar
  37. Doris PA (1984) Central cardiovascular regulation and the role of vasopressin: a review. Clin Exp Hypertens—Theory and Practice A6: 2197–2217CrossRefGoogle Scholar
  38. Edwards CRW, Al-Dujaili EAS, Boscaro M, Gow I, Williams BC (1982) Peptidergic and monoaminergic regulation of aldosterone secretion. In: Mantero F, Biglieri EG, Edwards CRW (eds) Endocrinology of hypertension. Academic, London, pp 11–18Google Scholar
  39. Ferrario CM (1983) Central nervous system mechanisms of blood pressure control in normotensive and hypertensive states. Chest 83S: 331S–335SGoogle Scholar
  40. Ferrario CM, Bames KL, Szilagyi JE, Brosnihan KB (1979) Physiological and pharmacological characterization of the area psotrema pressor pathways in the normal dog. Hypertension 1: 235– 245PubMedGoogle Scholar
  41. Ferrario CM, Bames KL, Bohonek S (1981) Neurogenic hypertension produced by lesions of the nucleus tractus solitarii alone or with sinoaortic denervation in the dog. Hypertension 3 [Suppl II]: II-112–II-118Google Scholar
  42. Ferrario CM, Dickinson CJ, McCubbin JW (1970) Central vasomotor stimulation by angiotensin. Clin Sei 39: 239–245Google Scholar
  43. Ferrario CM, Gildenberg PL, McCubbin JW (1972) Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res 30: 257–262PubMedGoogle Scholar
  44. Ferrario CM, Schiavone MT, Bames KL, Brosnihan KB, Speth RC (1985) Role of central mechanisms in the development of endocrine hypertension. In: Edwards CRW, Carey RM (eds) Essential hypertension as an endocrine disease. Butterworths, London, pp 1–39Google Scholar
  45. Ferrario CM, Takishita S (1981) Baroreceptor reflexes and hypertension. In: Kuchel O, Hamet P, Cantin M (eds) Hypertension: physiopathology and treatment. McGraw-Hill, New York, pp 161– 170Google Scholar
  46. Finkelman S, Goldstein DJ, Fischer-Ferraro G, Diaz A, Nahmod VE (1972) In vitro production of angiotensin and renin release by isolated glomeruli. Medicina 32 [Suppl 1]: 37–39Google Scholar
  47. Fischer-Ferraro C, Nahmod VE, Goldstein DJ, Finkielman S (1971) Angiotensin and renin in rat and dog brain. J Exp Med 133: 353–361PubMedCrossRefGoogle Scholar
  48. Fleetwood-Walker SM, Coote JH (1981) The contribution of brain stem catecholamine cell groups to the innervation of the sympathetic lateral cell column. Brain Res 205: 141–155PubMedCrossRefGoogle Scholar
  49. Folkow B (1962) Physiological aspects of primary hypertension. Physiol Rev 62:347–504Google Scholar
  50. Ganong WF, Barbier C (1982) Neuroendocrine components in the regulation of renin secretion. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Raven, New York, pp 231–262Google Scholar
  51. Gilbey MP, McKenna K, Schramm L (1983) Effects of substance P on sympathetic preganglionic neurons. Neurosci Lett 41: 157–159PubMedCrossRefGoogle Scholar
  52. Gildenberg PL, Ferrario CM, McCubbin JW (1973) Two sites of cardiovascular action of angiotensin II in the brain of the dog. Clin Sei 44: 417–420Google Scholar
  53. Goodehild AK, Moon EA, Dampney RAL, Howe PRC (1984) Evidence that adrenaline neurons in the rostral ventrolateral medulla have a vasopressor function. Neurosci Lett 45: 267–272CrossRefGoogle Scholar
  54. Gordon FJ, Brody MJ, Fink GD, Buggy J, Johnson AK (1979) Role of central catecholamines in the control of blood pressure and drinking behavior. Brain Res 178: 161–173PubMedCrossRefGoogle Scholar
  55. Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1983) Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 5 [Suppl V]: V80–V84PubMedGoogle Scholar
  56. Heike CJ, Neil JJ, Massari VJ, Loewy AD (1982) Substance P neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat. Brain Res 243: 147–152CrossRefGoogle Scholar
  57. Hilton SM (1975) Ways of viewing the central nervous system control of the circulation—old and new. Brain Res 87: 213–219PubMedCrossRefGoogle Scholar
  58. Hirose S, Yokosawa H, Inagami T (1978) Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature 274: 392–393PubMedCrossRefGoogle Scholar
  59. Howe PRC, Kuhn DM, Minson JB, Stead BH, Chalmers JP (1983) Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res 270: 29–36PubMedCrossRefGoogle Scholar
  60. Ito T, Eggena P, Barrett JD, Katz D, Metter J, Sambhi MP (1980) Studies on angiotensinogen of plasma and cerebrospinal fluid in normal and hypertensive human subjects. Hypertension 2: 432– 436PubMedGoogle Scholar
  61. Iverson IL (1983) Nonopioid neuropeptides in mammalian CNS. Ann Rev Pharmacol Toxicol 23: 1 –27CrossRefGoogle Scholar
  62. Jewell PA, Verney EB (1957) An experimental attempt to determine the site of the neurohypophysial osmoreceptors in the dog. Philos Trans R Soc London B240: 197–324Google Scholar
  63. Joy MD, Lowe RD (1970) Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature 228: 1303–1304PubMedCrossRefGoogle Scholar
  64. Kalia M, Welles R (1980) Brain stem projections of the aortic nerve in the cat: a study using tetramethyl benzidine as the substrate for HRP. Brain Res 188: 23–32PubMedCrossRefGoogle Scholar
  65. Keeler JR, Heike CJ (1985) Spinal cord substance P mediates bicueulline-induced activation of cardiovascular responses from the ventral medulla. J Auton Nerv Syst 13: 19–34PubMedCrossRefGoogle Scholar
  66. Korner PI (1979) Central nervous control of autonomic cardiovascular function. In: Berne RM (ed) Handbook of physiology, section 2, vol 1, American Physiological Society, Bethesda, pp 691–739Google Scholar
  67. Laubie M, Schmitt H (1979) Destruction of the nucleus tractus solitarii in the dog: comparison with sinoaortic denervation., Am J Physiol 236: H736–H743PubMedGoogle Scholar
  68. Lewis GP (1975) Physiological mechanisms controlling secretory activity of adrenal medulla. In: Blaschko H, Sayers G, Smith AD (eds) Handbook of physiology, sect 7, vol VI. American Physiological Society, Washington, DC, pp 309–320Google Scholar
  69. Liard JF, Dériaz O, Tschopp M, Schoun J (1981) Cardiovascular effects of vasopressin infused into the vertebral circulation of conscious dogs. Clin Sei 61: 345–347Google Scholar
  70. Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24PubMedCrossRefGoogle Scholar
  71. Loewy AD, Gregorie EM, McKellar S, Baker RP (1979) Electrophysiological evidence that the A5 catecholamine cell group is a vasomotor center. Brain Res 178: 196–200PubMedCrossRefGoogle Scholar
  72. Loewy AD, McKellar S (1981) Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211: 146–152PubMedCrossRefGoogle Scholar
  73. Loewy AD, Sawyer WB (1982) Substance P antagonist inhibits vasomotor responses elicited from ventral medulla in rat. Brain Res 245: 379–383PubMedCrossRefGoogle Scholar
  74. Lorenz RG, Saper CB, Wong DL, Ciaranello R, Loewy AD (1985) Co-localization of substance P and PNMT-iike immunoreactivity in neurons of ventrolateral medulla that project to the spinal cord: potential role in control of vasomotor tone. Neurosci Lett 55: 255–260PubMedCrossRefGoogle Scholar
  75. Marson O, Chemicky CL, Bames KL, Averill DB, Ferrario CM (1984) What is the role of the AV3V region in the production of tfie neurogenic actions of angiotensin II in the dog? Clin Exp Hypertens A6: 1927–1932CrossRefGoogle Scholar
  76. McEwen BS, Davis PG, Parsons B, Pfaff DW (1979) The brain as a target for steroid hormone action. Ann Rev Neurosci 2: 65–112PubMedCrossRefGoogle Scholar
  77. Mendelsohn FAO, Quirion R, Saavedra JM, Aguilera G, Catt KJ (1984) Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sei USA 81: 1575–1579CrossRefGoogle Scholar
  78. Michelini LC, Bames KL, Ferrario CM (1983) Argnine vasopressin modulates the central action of angiotensin II in the dog. Hypertension 5 [Suppl V]: V94–V100PubMedGoogle Scholar
  79. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1: 129–169PubMedCrossRefGoogle Scholar
  80. Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Ann Rev Neurosci 2: 113–168PubMedCrossRefGoogle Scholar
  81. Nathan MA, Reis DJ (1977) Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat. Circ Res 40: 72–81PubMedGoogle Scholar
  82. Osman MY, Smeby RR, Sen S (1979) Separation of dog brain renin-like activity from acid protease activity. Hypertension 1: 53–60PubMedGoogle Scholar
  83. Owsjannikow P (1871) Die tonischen und reflectorischen centren der gefassnerven. Ber Sachs Ges (Akad) Wiss 23: 135–147Google Scholar
  84. Panneton WM, Loewy AD (1980) Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res 191: 239–244PubMedCrossRefGoogle Scholar
  85. Ranson SW, Billingsley PR (1916) Vasomotor reactions from stimulation of the floor of the fourth ventricle. Studies in vasomotor reflex arcs III. Am J Physiol 41: 85–90Google Scholar
  86. Reid IA (1983) Salt and water regulation. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley, New York, pp 333–348Google Scholar
  87. Reid JL, Zivin JA, Kopin IJ (1975) Central and peripheral adrenergic mechanisms in the development of deoxycorticosterone-saline hypertension in rats. Circ Res 37: 569–579PubMedGoogle Scholar
  88. Reis DJ, Joh TH, Nathan MA, Renaud B, Snyder DW, Talman W (1979) Nucleus tractus solitarii: catecholaminergic innervation in normal and abnormal control of arterial pressure. In: Meyer P, Schmitt H (eds) Nervous system and hypertension. Wiley, New York, pp 147–164Google Scholar
  89. Reis DJ, Ross CA, Ruggiero DA, Granata AR, Joh TH (1984) Role of adrenaline neurons of ventrolateral medulla (the Cl group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertens [A] 6: 221–241CrossRefGoogle Scholar
  90. Rocha e Silva M, Rosenberg M (1969) The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (London) 202: 535–557Google Scholar
  91. Ross CA, Armstrong DM, Ruggiero DA, Pickel VM, Joh TH, Reis DJ (1981) Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocy-tochemical and retrograde transport demonstration. Neurosci Lett 25: 257–262PubMedCrossRefGoogle Scholar
  92. Ross C, Ruggiero DA, Joh TH, Park DH, Reis DJ (1983) Adrenaline synthesizing neurons in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Res 273: 356–361PubMedCrossRefGoogle Scholar
  93. Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214: 685–687PubMedCrossRefGoogle Scholar
  94. Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205: 260–272PubMedCrossRefGoogle Scholar
  95. Scharrer B (1977) Peptides in neurobiology: historical introduction. In: Gainer H (ed) Peptides in neurobiology. Plenum, New York, pp 1–8CrossRefGoogle Scholar
  96. Scharrer E, Scharrer B (1954) Hormones produced by neurosecretary cells. Recent Prog Horm Res 10: 183–240Google Scholar
  97. Share L (1974) Blood pressure, blood volume, and the release of vasopressin. In: Knobil E, Sawyer WH (eds) Handbook of physiology, Sect 7, Endocrinology, vol 4, The pituitary gland and its neuroendocrine control. American Physiological Society, Washington, DC, pp 243–255Google Scholar
  98. Share L (1976) Role of cardiovascular receptors in the control of ADH release. Cardiology 61 [Suppl I]: 51–64PubMedCrossRefGoogle Scholar
  99. Sladek CD, Johnson AK (1983) Effect of anteroventral third ventricle lesions on vasopressin release by organ-cultured hypothalamo-neurohypophyseal explants. Neuroendocrinology 37: 78–84PubMedCrossRefGoogle Scholar
  100. Sladek CD, Knigge KM (1977) Osmotic control of vasopressin release by rat hypothalamo-neurohypophyseal explants in organ culture. Endocrinology 101: 1834–1838PubMedCrossRefGoogle Scholar
  101. Slater EE (1981) Brain renin: progress in research. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven, New York, pp 293–300Google Scholar
  102. Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. In: Cross BA, Leng G (eds) The neurohypophysis: structure, function and control. Elsevier, London, pp 101–114 (Progress in brain research, vol. 60)CrossRefGoogle Scholar
  103. Speth RC, Wamsley JK, Gehlert DR, Chernicky CL, Barnes KL, Ferrario CM (1985) Angiotensin II receptor localization in the canine CNS. Brain Res 326: 137–143PubMedCrossRefGoogle Scholar
  104. Takano Y, Loewy AD (1985) Reduction of [3H] substance P binding in the intermediolateral cell column after sympathectomy. Brain Res 333: 193–196PubMedCrossRefGoogle Scholar
  105. Thoren P (1980) Characteristics of aortic baroreceptors with non-medullated afferents in rabbits and rats. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford, pp 17–22Google Scholar
  106. Undesser KP, Hasser EM, Haywood JR, Johnson AK, Bishop VS (1985) Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ Res 56: 410–417PubMedGoogle Scholar
  107. Wallach JH, Loewy AD (1980) Projections of the aortic nerve to the nucleus tractus solitarius in the rabbit. Brain Res 188: 247–251PubMedCrossRefGoogle Scholar
  108. West MJ, Elliott J, Chalmers J (1984) The sympatho-adrenal system and vasopressin in cardovascular responses to A1 lesions. Clin Exp Hypertens [A] 6: 157–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • K. L. Barnes
  • C. M. Ferrario

There are no affiliations available

Personalised recommendations