Advertisement

Interaction of Vasomotion and Blood Rheology in Haemodynamics

  • H. Schmid-Schönbein

Abstract

The rheology of blood as an extremely non-Newtonian fluid has attracted the interest not only of physiologists but also of physicists, bioengineers and of course of clinicians. Unfortunately, the conclusions drawn from the in vitro measurements of apparent viscosity of blood in health and disease are often gross over-simplifications, ignoring the established facts about haemodynamics in general, let alone the important organ-specific differences in haemodynamics. It is therefore not surprising that the reaction of the general biomedical public is one of neglect or of almost emotional rejection — as evidenced in a recent editorial in an influential journal (Anonymous, 1977), in which the biological significance of the shear-rate dependence of apparent blood viscosity was totally denied.

Keywords

Wall Shear Stress Apparent Viscosity Blood Viscosity Flow Force Blood Rheology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1977) Hyperviscosity in disease (Editorial). Lancet ii: 961–962Google Scholar
  2. Baeckstrom P, Folkow B, Kendrick E, Lofving B, Oberg B (1971) Effects of vasoconstriction on blood viscosity in vivo. Acta Physiol Scand 81: 376–384PubMedCrossRefGoogle Scholar
  3. Benis A M, Chien S, Usami S, Jan K-M (1973) Inertial pressure losses in perfused hindlimb: a reinterpretation of the results of Whittacker and Winton. J Appl Physiol 34: 383–389PubMedGoogle Scholar
  4. Bicher H I (1972) Blood cell aggregation in thrombotic processes. C.C. Thomas, Springfield, IllinoisGoogle Scholar
  5. Braasch D (1971) Red cell deformability and capillary blood flow. Physiol Rev 51: 679–701Google Scholar
  6. Brânemark P I (1971) Intravascular anatomy of blood cells in man. Karger, BaselGoogle Scholar
  7. Chambers R, Zweifach B W (1944) Topography and function of the mesenteric circulation. Am J Anat 75, 173–182CrossRefGoogle Scholar
  8. Charm S E, Kurland G S (1974) Blood flow and microcirculation. J. Wiley and Sons, New YorkLondon-Sydney-TorontoGoogle Scholar
  9. Chien S (1969) Blood rheology and its relation to flow resistance and transcapillary exchange, with special reference to shock. Adv Microcirc 2: 89–103Google Scholar
  10. Chien S (1972) Present state of blood rheology. In: Messmer K, Schmid-Schönbein H (eds) Hemodilution, theoretical basis and clinical application. Karger, Basel, New York pp 1–40Google Scholar
  11. Chien S, Usami S, Dellenback R J, Bryant C A (1971) Comparative haemorheology — haematological implications of species differences in blood viscosity. Biorheology 8: 35–57PubMedGoogle Scholar
  12. Devendran T, Schmid-Schönbein H (1975) Axial concentration in narrow tube flow for various RBC suspensions as function of wall shear stress. Pflueger’s Arch 355: R-19Google Scholar
  13. Dintenfass L (1971) Blood microrheology-viscosity factors in blood flow, ischaemia and thrombosis. Butterworths, LondonGoogle Scholar
  14. Ditzel J (1959) Relationship of blood protein composition to intra-vascular erythrocyte aggregation (sludged blood). Acta Med Scand 164 (Suppl. 343): 1–63Google Scholar
  15. Djojosugito A M, Folkow B, Oberg B, White S (1970) A comparison of blood viscosity measured in vitro and in a vascular bed. Acta Physiol Scand. 78, 70–84PubMedCrossRefGoogle Scholar
  16. Driessen G K, Heidtmann H, Schmid-Schönbein H (1979) Effect of haematocrit on red cell velocity in the capillaries of rat mesentery during hemodilution and hemoconcentration. Pfluegers Arch 380: 1–6CrossRefGoogle Scholar
  17. Eriksson E, Myrhage R (1972) Microvascular dimensions and blood flow in skeletal muscle. Acta Physiol Scand 86: 211–222PubMedCrossRefGoogle Scholar
  18. Fitzgerald J M (1969) Mechanics of red cell motion through very narrow capillaries. Proc Roy Soc London B 174: 193–227CrossRefGoogle Scholar
  19. Folkow B (1964) Autoregulation in muscle and skin. Circulat Res, XIV and XV, Suppl. I: 19–24Google Scholar
  20. Gabelnick H, Litt M (1973) Rheology of biological systems. Charles C. Thomas, Springfield, IllinoisGoogle Scholar
  21. Gaehtgens P, Schmid-Schönbein H, Dickmans H A, Hirsch H (1966) Über das Auftreten von Erythrocyten-Aggregaten in Abgängigkeit vom Schergrad in vivo. Pfluegers Arch 291, 35–36Google Scholar
  22. Gaehtgens P, Uekermann U (1973) The apparent viscosity of blood in different vascular compartments of the auto-perfused canine foreleg, and its variation with haematocrit. Bibl Anat 11: 76–82PubMedGoogle Scholar
  23. Gelin L E, Zederfeldt B (1961) Experimental evidence of the significance of disturbances in the flow properties of blood. Acta Chirurg Scand 122: 336–342Google Scholar
  24. Goldsmith H L, Beitel L (1970) Axial migration of red cells in tube flow. Fed Proc 29: 319–321Google Scholar
  25. Goldstone J, Hutchins P M, Schmid-Schönbein H, Urschel C, Sonnenblick E, Wells R (1971) Correlation of microvascular and rheological factors in haemorrhagic shock. In: Ditzel J Lewis D (eds) Proc. 6th Europ. Soc. Microcirculat; Karger, Basel, pp 150–155Google Scholar
  26. Gross J F, Intaglietta M (1973) Effects of morphology and structural properties on microvascular haemodynamics. Bibl Anat 11: 532–539PubMedGoogle Scholar
  27. Heidtmann H, Driessen G, Haest C W M, Kamp D, Schmid-Schönbein H (1979) The influence of rheological factors on the recovery of the microcirculation following arterial hypotension. Microvasc Res 18: 449–457Google Scholar
  28. Hint H C (1964) The flow properties of erythrocyte suspensions in isolated rabbit ear; the effect of erythrocyte aggregation, haematocrit and perfusion pressure. Bibl Anat 4: 112–118Google Scholar
  29. Hutchins P M, Goldstone J, Wells R E (1973) Effects of haemorrhagic shock on the microvasculature of skeletal muscle. Microvasc Res 5: 131–140PubMedCrossRefGoogle Scholar
  30. Illig L (1961) Die terminale Strombahn. Capillarbett und Mikrozirkulation. In: Pathologie und Klinik. Springer, Berlin p 159Google Scholar
  31. Johnson P C (1967) Autoregulation of blood flow. Gastroenterology 52: 435–441PubMedGoogle Scholar
  32. Johnson P C, Blaschke J, Burton K S, Dial J H (1971) Influence of flow variations on capillary haematocrit in mesentery. Am J Physiol 221: 105–112PubMedGoogle Scholar
  33. Kiesewetter H, Schmid-Schönbein H, Radtke H, Stolwerk G (1979) In vitro demonstration of collateral blood viscidation: Flow measurement in a model of vascular networks. Microvasc Res /7: S-72Google Scholar
  34. Klitzman B, Duling B R (1979) Causes of low microvascular haematocrit in hamster cremaster capillaries. Microvasc Res 17: S-70Google Scholar
  35. Knisely M H (1965) Intravascular erythrocyte aggregation (blood sludge). In Hamilton W F, Dow P (eds) Handbook of physiology, Sect 2 Vol III. Amer Physiol Soc, Washington D C, pp 2249–2292Google Scholar
  36. Kurland G S, Charm S E, Brown S, Tousignant P (1968) Comparison of blood flow in a living vessel and in glass tubes. In: Hemorheology. Copley A L (ed) Pergamon Press, Oxford, pp 609–615Google Scholar
  37. LaCelle P L (1975) Pathologic erythrocytes in the capillary microcirculation. Blood Cells 1: 269–284Google Scholar
  38. Larcan A, Stoltz J-F (1970) Microcirculation et hémorheologie. Masson, ParisGoogle Scholar
  39. Levy M, Share R L (1953) The influence of erythrocyte concentration upon the pressure flow relationship of the dog’s hind limb. Circ Res 1: 247–255PubMedGoogle Scholar
  40. Lighthill M J (1968) Pressure-forcing of tightly fitting pellets along fluid filled elastic tubes. J Fluid Mech 34: 113–143CrossRefGoogle Scholar
  41. Lipowski H H (1975) In-vivo study of the rheology of blood in the microcirculation. Ph.D. Dissertation, Univ. of California, San DiegoGoogle Scholar
  42. Lipowski H H, Zweifach B W (1974) Network analysis of microcirculation of cat mesentery. Microvasc Res 7: 73–83CrossRefGoogle Scholar
  43. Mchedlishvili G I (1969) The conjectural role of the Fahrâeus-Lindqvist rheological phenomenon in some microcirculatory events. Bibl Anat 10: 66–73PubMedGoogle Scholar
  44. Meiselman H J, Frasher W G, Jr, Wayland H (1972) In vivo rheology of dog blood after infusions of low molecular weight dextran or saline. Microvasc Res 4: 399–412PubMedCrossRefGoogle Scholar
  45. Merrill E W (1969) Rheology of blood. Physiol Rev 49.’ 863–888Google Scholar
  46. Oberg B (1964) Effects of cardiovascular reflexes on net capillary fluid transfer. Acta Physiol Scand 62: 1–98Google Scholar
  47. Schmid-Schönbein H (1976) Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation. Int Rev Physiol 9: 1–62PubMedGoogle Scholar
  48. Schmid-Schönbein H, Wells R E (1971) Rheological properties of human erythrocytes and their influence upon the “anomalous” viscosity of blood. Ergeb Physiol Biol Chem Exp Pharmacol 63: 147–219Google Scholar
  49. Schmid-Schönbein H, Gaehtgens P, Hirsch H (1967) Über eine neue Methode zur Untersuchung der rheologischen Eigenschaften von Erythrozythen-Aggregaten. Pfluegers Arch 297: 107–114CrossRefGoogle Scholar
  50. Staubesand J (1974) Arterio-venöse Anastomosen. In: Heberer G, Rau G, Schoop W (eds) Angiologie. Grundlagen, Klink and Praxis, 2 Auflg. Thieme Verlag, Stuttgart p 127Google Scholar
  51. Thorsen G, Hint H (1950) Aggregation, sedimentation and intravascular sludging of erythrocytes. Acta Chirurg Scand, Suppl 154: 1–50Google Scholar
  52. Thuranskii K (1957) Der Blutkreislauf der Netzhaut. Ungarische Akademie der Wissenschaften BudapestGoogle Scholar
  53. Weed R I (1970) The importance of erythrocyte deformability. Am J Med 49: 147–150PubMedCrossRefGoogle Scholar
  54. Wells R E (1973) The rheology of blood. In: Zwiefach B W, Grant L (eds) The inflammatory process, 2nd ed. Academic Press, New York-London, p 221Google Scholar
  55. Whittacker S R F, Winton F R (1933) The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration. J Physiol (Lond) 78: 339–369Google Scholar
  56. Wiedeman M (1963) Dimensions of blood vessels from distributing artery to collecting vein. Circulat Res 12: 375–381PubMedGoogle Scholar
  57. Zweifach B W (1974) Quantitative studies of microcirculatory structure and function, I. Circulat Res 34: 843–857PubMedGoogle Scholar

Copyright information

© Spring-Verlag Berling Heidelberg 1981

Authors and Affiliations

  • H. Schmid-Schönbein

There are no affiliations available

Personalised recommendations