A Point Process Approach to Cortical Networks

  • Stefan Rotter
  • Ad Aertsen
Conference paper


The “cognitive” properties of some artificial neuronal networks have introduced attractive models for cortical function. We discuss an extended framework for the description of biological nerve nets such that a direct comparison with the signals from electrophysiological recordings on the level of individual nerve cells becomes feasible. The mathematical analysis of these models leads to explicit conditions on their biophysical parameters giving rise to unexpected conclusions. We demonstrate that the “dynamic repertory” of a system of interacting spiking neurons is dramatically enhanced, if signals are admitted to have a time structure. Some possibilities of a spatio-temporal code in presence of plastic synapses and an appropriate learning rule are discussed.


Point Process Point Process Model Cortical Pyramidal Cell Artificial Neuronal Network Plastic Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. Journal of Neurophysiology, 70: 1629–1638, 1993.Google Scholar
  2. [2]
    M. Abeles, Y. Prut, H. Bergman, E. Vaadia, and A. Aertsen. Integration, synchronicity and periodicity. In A. Aertsen, editor, Brain Theory: SpatioTemporal Aspects of Brain Function, pages 149–181. Elsevier, Amsterdam, New York, London, Tokyo, 1993.Google Scholar
  3. [3]
    D. A. McCormick, B. W. Connors, J. W. Lighthall, and D. A. Prince. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 54: 782–806, Oct. 1985.Google Scholar
  4. [4]
    A. D. Reyes and E. E. Fetz. Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. Journal of Neurophysiology, 69: 1661–1672, 1993.Google Scholar
  5. [5]
    S. Rotter. Wechselwirkende siochastische Punktprozesse als Modell fir neuronale Aktivität im Neocortex der Säugetiere, volume 21 of Reihe Physik. Harri Deutsch, Frankfurt, 1994.Google Scholar
  6. [6]
    M. N. Shadlen and W. T. Newsome. Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4: 569–579, 1994.CrossRefGoogle Scholar
  7. [7]
    W. R. Softky and C. Koch. The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. The Journal of Neuroscience, 13: 334–350, 1993.Google Scholar
  8. [8]
    E. Vaadia, I. Haalman, M. Abeles, H. Bergman, Y. Prut, H. Slovin, and A. Aertsen. Dynamics of neuronal interactions in the monkey cortex in relation to behavioral events. Nature, 373: 515–518, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1995

Authors and Affiliations

  • Stefan Rotter
    • 1
  • Ad Aertsen
    • 2
  1. 1.Max-Planck-Institut für EntwicklungsbiologieTübingenGermany
  2. 2.Center for Research of Higher Brain FunctionsWeizmann Institute of Science — Dept. of NeurobiologyRehovotIsrael

Personalised recommendations