Semi-Empirical Modeling of Non-Linear Dynamic Systems through Identification of Operating Regimes and Local Models

  • Tor A. Johansen
  • Bjarne A. Foss
Part of the Advances in Industrial Control book series (AIC)


An off-line algorithm for semi-empirical modeling of nonlinear dynamic systems is presented. The model representation is based on the interpolation of a number of simple local models, where the validity of each local model is restricted to an operating regime, but where the local models yield a complete global model when interpolated. The input to the algorithm is a sequence of empirical data and a set of candidate local model structures. The algorithm searches for an optimal decomposition into operating regimes, and local model structures. The method is illustrated using simulated and real data. The transparency of the resulting model and the flexibility with respect to incorporation of prior knowledge is discussed.


Prediction Error Local Model Gluconic Acid Operating Regime Servo Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Akaike. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math., 21:243–247, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. C. Bezdek, C. Coray, R. Gunderson, and J. Watson. Detection and characterization of cluster substructure. II. Fuzzy c-varieties and complex combinations thereof. SIAM J. Applied Mathematics, 40:352–372, 1981.Google Scholar
  3. 3.
    M. Carlin, T. Kavli, and B. Lillekjendlie. A comparison of four methods for nonlinear data modeling. Chemometrics and Int. Lab. Sys., 23:163–178, 1994.CrossRefGoogle Scholar
  4. 4.
    P. Craven and G. Wahba. Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Math., 31:317–403, 1979.MathSciNetGoogle Scholar
  5. 5.
    R. D. De Veaux, D. C. Psichogios, and L. H. Ungar. A tale of two nonparametric estimation schemes: MARS and neural networks. In Proc. 4th Int. Conf. Artificial Intelligence and Statistics, 1993.Google Scholar
  6. 6.
    J. H. Friedman. Multivariable adaptive regression splines (with discussion). The Annals of Statistics, 19:1–141, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    T. K. Ghose and P. Ghosh. Kinetic analysis of gluconic acid production by Pseudomonas ovalis. J. Applied Chemical Biotechnology, 26:768–777, 1976.CrossRefGoogle Scholar
  8. 8.
    R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3:79–87, 1991.CrossRefGoogle Scholar
  9. 9.
    T. A. Johansen and B. A. Foss. Constructing NARMAX models using ARMAX models. Int. J. Control, 58:1125–1153, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    T. A. Johansen and B. A. Foss. State-space modeling using operating regime decomposition and local models. In Preprints 12th IFAC World Congress, Sydney, Australia, volume 1, pages 431–434, 1993.Google Scholar
  11. 11.
    T. A. Johansen and B. A. Foss. A dynamic modeling framework based on local models and interpolation — combining empirical and mechanistic knowledge and data. Submitted to Computers and Chemical Engineering, 1994.Google Scholar
  12. 12.
    T. A. Johansen and E. Weyer. Model structure identification using separate validation data — asymptotic properties. Submitted to the European Control Conference, Rome, 1995.Google Scholar
  13. 13.
    R. D. Jones and co-workers. Nonlinear adaptive networks: A little theory, a few applications. Technical Report 91–273, Los Alamos National Lab., NM, 1991.Google Scholar
  14. 14.
    M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Technical Report 9301, MIT Computational Cognitive Science, 1993.Google Scholar
  15. 15.
    T. Kavli. Nonuniformly partitioned piecewise linear representation of continuous learned mappings. In Proceedings of IEEE Int. Workshop on Intelligent Motion Control, Istanbul, pages 115–122, 1990.CrossRefGoogle Scholar
  16. 16.
    T. Kavli. ASMOD — An algorithm for adaptive spline modelling of observation data. Int. J. Control, 58:947–967, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J. Larsen. A generalization error estimate for nonlinear systems. In Proc. IEEE Workshop on Neural Networks for Signal Processing, Piscataway, NJ, pages 29–38, 1992.Google Scholar
  18. 18.
    L. Ljung. Convergence analysis of parametric identification methods. IEEE Trans. Automatic Control, 23:770–783, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    L. Ljung. System Identification: Theory for the User. Prentice-Hall, Inc., Engle-wood Cliffs, NJ., 1987.zbMATHGoogle Scholar
  20. 20.
    R. Murray-Smith. Local model networks and local learning. In Fuzzy Duisburg, pages 404–409, 1994.Google Scholar
  21. 21.
    R. Murray-Smith and H. Gollee. A constructive learning algorithm for local model networks. In Proceedings of the IEEE Workshop on Computer-Intensive Methods in Control and Signal Processing, Prague, Czech Republic, pages 21–29, 1994.Google Scholar
  22. 22.
    M. Pottmann, H. Unbehauen, and D. E. Seborg. Application of a general multi-model approach for identification of highly non-linear processes — A case study. Int. J. Control, 57:97–120, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    R. Shibata. Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrica, 63:117–126, 1976.zbMATHCrossRefGoogle Scholar
  24. 24.
    A. Skeppstedt, L. Ljung, and M. Millnert. Construction of composite models from observed data. Int. J. Control, 55:141–152, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    E. Sørheim. A combined network architecture using ART2 and back propagation for adaptive estimation of dynamical processes. Modeling, Identification and Control, 11:191–199, 1990.CrossRefGoogle Scholar
  26. 26.
    P. Stoica, P. Eykhoff, P. Janssen, and T. Söderström. Model-structure selection by cross-validation. Int. J. Control, 43:1841–1878, 1986.zbMATHCrossRefGoogle Scholar
  27. 27.
    K. Stokbro, J. A. Hertz, and D. K. Umberger. Exploiting neurons with localized receptive fields to learn chaos. J. Complex Systems, 4:603, 1990.zbMATHGoogle Scholar
  28. 28.
    M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Royal Statistical Soc. B, 36:111–133, 1974.zbMATHGoogle Scholar
  29. 29.
    M. Sugeno and G. T. Kang. Structure identification of fuzzy model. Fuzzy Sets and Systems, 26:15–33, 1988.MathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Takagi and M. Sugeno. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man, and Cybernetics, 15:116–132, 1985.zbMATHGoogle Scholar
  31. 31.
    R. R. Yager and D. P. Filev. Unified structure and parameter identification of fuzzy models. IEEE Trans. Systems, Man, and Cybernetics, 23:1198–1205, 1993.CrossRefGoogle Scholar
  32. 32.
    Y. Yoshinari, W. Pedrycz, and K. Hirota. Construction of fuzzy models through clustering techniques. Fuzzy Sets and Systems, 54:157–165, 1993.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1995

Authors and Affiliations

  • Tor A. Johansen
    • 1
  • Bjarne A. Foss
    • 1
  1. 1.Department of Engineering CyberneticsNorwegian Institute of TechnologyTrondheimNorway

Personalised recommendations