Skip to main content

On ASMOD — An Algorithm for Empirical Modelling using Spline Functions

  • Chapter
Neural Network Engineering in Dynamic Control Systems

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Empirical modelling algorithms build mathematical models of systems based on observed data. This chapter describes the theoretical foundation and principles of the ASMOD algorithm, including some improvements on the original algorithm. The ASMOD algorithm uses B-splines for representing general nonlinear models of several variables. The internal structure of the model is, through an incremental refinement procedure, automatically adapted to the dependencies observed in the data. Only input variables which are found of relevance are included in the model, and the dependency of different variables are decoupled when possible. This makes the model more parsimonious and also more transparent to the user. Case studies are included which confirm the usefulness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike. Fitting autoregressive models for prediction. Ann. Inst Stat. Math, 21:425–439, 1969.

    Google Scholar 

  2. H. Akaike. A new look at the statistical model identification. IEEE Trans. Automatic Control, 19:716–723, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Bohlin. Derivation of a designer’s guide for interactive ‘gray-box’ identification of nonlinear stochastic objects. Int. Journal of Control, 59(6):1505–1524, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. N.A. Bridgett, M. Brown, C.J. Harris, and D.J. Mills. High-dimensional approximation using an associative memory network. In Proc. of IEE Control’94, volume 2, pages 1458 – 1465, 1994.

    Google Scholar 

  5. M. Brown, D.J. Mills, and C.J. Harris. The representation of fuzzy algorithms used in adaptive modelling and control schemes. Submitted to “Intelligent Systems Engineering”, 1994.

    Google Scholar 

  6. M. Brown and C. Harris. Neurofuzzy adaptive modelling and control. Prentice-Hall International (UK) Limited, 1994.

    Google Scholar 

  7. M. Carlin, T. Kavli, and B. Lillekjendlie. A comparison of four methods for nonlinear data modelling. Chemometrics and Intelligent Laboratory Systems, 23:163–177, 1994.

    Article  Google Scholar 

  8. R. Franke. Recent advances in the approximation of surfaces from scattered data. In C. K. Chui and L. L. Schumaker, editors, Topics in Multivariate Approximation, pages 79 – 98. Academic Press, Inc., New York, 1987.

    Google Scholar 

  9. J. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1 – 141, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Computation, 4:1–58, 1992.

    Article  Google Scholar 

  11. T.K. Ghose and P. Ghosh. Kinetic analysis of gluconic acid production by Pseudomonas ovalis. J. Applied Chemical Biotechnology, 26:768 – 777, 1976.

    Article  Google Scholar 

  12. T.J. Hastie and R.J. Tibshirani. Generalized Additive Models. Chapman and Hall, London, 1990.

    MATH  Google Scholar 

  13. P.J. Huber. Robust Statistics. John Wiley and Sons, Inc., 1981.

    Book  MATH  Google Scholar 

  14. D.R Hush and B.G. Home. Progress in supervised neural networks. what is new since Lippman. IEEE Signal Processing Magazine, pages 8 – 39, Jan 1993.

    Google Scholar 

  15. T.A. Johansen. Identification of non-linear systems using empirical data and prior knowledge — An optimization approach. Submitted to Automatica, Nov 1994.

    Google Scholar 

  16. T.A. Johansen and B.A. Foss. State-space modelling using operator regime decomposition and local models. Technical report 93–40-w, The Norwegian Institute of Technology, Trondheim, Norway, Jul 1993.

    Google Scholar 

  17. T.A. Johansen and B.A. Foss. Semi-empirical modelling of non-linear dynamic systems through identification of operating regimes and local models. In G. Irwin, K. Hunt and K. Warwick, editors, Advances in Neural Networks for Control Systems, Advances in Industrial Control. Springer-Verlag, 1995. This volume.

    Google Scholar 

  18. T. Kavli. ASMOD — an algorithm for adaptive spline modelling of observation data. International Journal of Control, 58(4):947–967, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kavli. Learning principles in dynamic control. PhD thesis, University of Oslo, ISBN no. 82–411–0394–8, SINTEF, Oslo, 1993.

    Google Scholar 

  20. P. Lancaster and K. Šalkauskas. Curve and Surface Fitting. An introduction. Academic Press, Inc., London, 1986.

    MATH  Google Scholar 

  21. I.J. Leontaritis and S.A. Billings. Model selection and validation methods for non-linear systems. Int. Journal of Control, 45(1):311–341, 1987.

    Article  MATH  Google Scholar 

  22. J. Moody and C.J. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281 – 294, 1989.

    Article  Google Scholar 

  23. J. Park and I.W. Sandberg. Universal approximation using radial-basis-function networks. Neural Computation, 3(2):246–257, 1991.

    Article  Google Scholar 

  24. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481–1497, Sep 1990.

    Article  Google Scholar 

  25. M.J.D. Powell. Radial basis functions for mulivariable interpolation: A review. In J. C. Mason and M. G. Cox, editors, Algorithms for Approximation. Clarendon Press, London, 1987.

    Google Scholar 

  26. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

    MATH  Google Scholar 

  27. J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471, 1978.

    Article  MATH  Google Scholar 

  28. T.D. Sanger. A tree-structured algorithm for reducing computation in networks with separable basis functions. Neural Computation, 3(1):67–78, 1991.

    Article  Google Scholar 

  29. L.L. Schumaker. Spline Functions: Basic Theory. Wiley, New York, 1981.

    MATH  Google Scholar 

  30. V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, 1982.

    Google Scholar 

  31. G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1990.

    Book  MATH  Google Scholar 

  32. E. Weyer. System Identification in the Behavioral Framework. PhD thesis, The Norwegian Institute of Technology, Trondheim, Norway, 1992.

    Google Scholar 

  33. E. Weyer and T. Kavli. Theoretical and practical aspects of the asmod algorithm. Internal reports (in preparation), 1994.

    Google Scholar 

  34. E. Weyer, R.C. Williamson, and I.M.Y. Mareels. System identification in the behavioral framework via risk minimisation. In preparation, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kavli, T., Weyer, E. (1995). On ASMOD — An Algorithm for Empirical Modelling using Spline Functions. In: Hunt, K.J., Irwin, G.R., Warwick, K. (eds) Neural Network Engineering in Dynamic Control Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-3066-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3066-6_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3068-0

  • Online ISBN: 978-1-4471-3066-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics