Snake Robots pp 265-286 | Cite as

Path Following Control of Snake Robots in Cluttered Environments

  • Pål Liljebäck
  • Kristin Y. Pettersen
  • Øyvind Stavdahl
  • Jan Tommy Gravdahl
Part of the Advances in Industrial Control book series (AIC)

Abstract

With respect to control design, this chapter represents the culmination of this book and can be regarded as a fusion of the control efforts reported in the previous chapters. In particular, forward propulsion of snake robots on planar surfaces based on oscillatory body shape changes was studied early in this book. Subsequently, this oscillatory gait pattern was extended with directional control capabilities that enabled the snake robot to track straight paths and paths defined by waypoints. The oscillatory gait pattern was further extended in the previous chapter with environment adaptation capabilities that enabled the snake robot to maintain forward propulsion in environments with obstacles. Directional control was, however, not considered in the previous chapter.

In this chapter, we will employ the knowledge gained from these control design efforts to propose a general framework for motion control of snake robots. The framework allows the motion of the snake robot to be specified in terms of three separate components, namely a body wave component, an environment adaptation component, and a heading control component. The framework is subsequently used to propose a continuous control strategy for straight line path following control of snake robots in cluttered environments. An important feature of the path following controller is the idea of a continuous jam resolution action that is performed in parallel with the cyclic wave motion of the robot to continuously adapt the body shape to the environment and prevent the motion from being jammed. We will also combine the proposed path following controller with a waypoint guidance strategy in order to enable a snake robot to move between waypoints in an obstacle environment. The performance of the path following controller and the waypoint guidance strategy is illustrated with simulation results where a snake robot is successfully steered between waypoints in an environment with obstacles. We will also present experimental results where the snake robot Kulko is successfully propelled through three different obstacle environments with the proposed controller.

Keywords

Torque Body Wave Culmination 

References

  1. Andruska, A.M., Peterson, K.S.: Control of a snake-like robot in an elastically deformable channel. IEEE/ASME Trans. Mechatron. 13(2), 219–227 (2008) CrossRefGoogle Scholar
  2. Bayraktaroglu, Z.Y.: Snake-like locomotion: experimentations with a biologically inspired wheel-less snake robot. Mech. Mach. Theory 44(3), 591–602 (2008) CrossRefGoogle Scholar
  3. Date, H., Takita, Y.: Adaptive locomotion of a snake like robot based on curvature derivatives. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 3554–3559 (2007) Google Scholar
  4. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Pål Liljebäck
    • 1
    • 2
  • Kristin Y. Pettersen
    • 2
  • Øyvind Stavdahl
    • 2
  • Jan Tommy Gravdahl
    • 2
  1. 1.Applied CyberneticsSINTEF ICTTrondheimNorway
  2. 2.Department of Engineering CyberneticsNorwegian University of Science & TechnologyTrondheimNorway

Personalised recommendations