Skip to main content

Skin and Vascular Assessments

  • Chapter
  • First Online:
Measurements in Wound Healing

Abstract

This chapter discusses the established and new techniques available to assess the skin and vascular systems. Objective reliable data that permit accurate diagnosis about the wound edge and the macrocirculation are vital for wound management. The chapter also goes into measurements in the microcirculation dealing with research and routine techniques. Measurements of the microcirculation are especially important today when diabetes and therefore diabetic foot disease are increasing rapidly in prevalence. The chapter also presents high resolution ultrasound which permits location of oedema – a common complication of wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romanelli M, et al. Technological advances in wound bed measurements. Wounds. 2002;14:58.

    Google Scholar 

  2. Mekkes JR, Westerhof W. Image processing in the study of wound healing. Clin Dermatol. 1995;13:401.

    Article  PubMed  CAS  Google Scholar 

  3. Solomon C, et al. The use of video image analysis for the measurements of venous ulcers. Br J Dermatol. 1995;133:565.

    Article  PubMed  CAS  Google Scholar 

  4. Chen F, Brown GM, Song M. Overview of three-dimensional shape measurement using optical methods. Opt Eng. 2000;39:10.

    Article  Google Scholar 

  5. Bernardini F, Rushmeier HE. The 3D model acquisition pipeline. Comput Graph Forum. 2002;21:149.

    Article  Google Scholar 

  6. Robertson A, The CIE. 1976 color-difference formulae. Color Res Appl. 1977;2:7–11.

    Google Scholar 

  7. Mastronicola D, Romanelli M, Barachini P. Burn depth assessment using a tri-stimulus colorimeter. Wounds. 2005;17(9):255–8.

    Google Scholar 

  8. Herbin M, et al. Assessment of healing kinetics through true colour image processing. IEEE Trans Med Imaging. 1993;12:39.

    Article  PubMed  CAS  Google Scholar 

  9. Romanelli M. Objective measurements of venous ulcer debridement and granulation with a skin colour reflectance analyser. Wounds. 1997;9:122.

    Google Scholar 

  10. Lizaka S, et al. Concurrent validation and reliability of digital image analysis of granulation tissue color for clinical pressure ulcers. Wound Repair Regen. 2011;19:455–63.

    Article  Google Scholar 

  11. Altermyer P, et al. General phenomenon of ultrasound in dermatology. In: Altermyer P, El-Gammal S, Hoffmann K, editors. Ultrasound in dermatology. Berlin: Springer-Verlag; 1991. p. 55.

    Google Scholar 

  12. Whiston RJ, Melhuish J, Harding KG. High resolution ultrasound imaging in wound healing. Wounds. 1993;5:116.

    Google Scholar 

  13. Gniadecka M. Localization of dermal oedema in lipodermatosclerosis, lymphedema and cardiac insufficiency. J Am Acad Dermatol. 1996;35:37.

    Article  PubMed  CAS  Google Scholar 

  14. Katz SM, et al. Objective measurement of hypertrophic burn scar. A preliminary study on tonometry and ultrasonography. Ann Plast Surg. 1985;14:121.

    Article  PubMed  CAS  Google Scholar 

  15. Van Den Kerckhove E, et al. Reproducibility of repeated measurements on post-burn scars with Dermascan C. Skin Res Technol. 2003;9:81.

    Article  PubMed  Google Scholar 

  16. Dyson M, et al. Wound healing assessment using 20 MHz ultrasound and photography. Skin Res Technol. 2003;9:116.

    Article  PubMed  CAS  Google Scholar 

  17. Rippon MG, et al. Ultrasound assessment of skin and wound tissue; comparison with histology. Skin Res Technol. 1998;4:147.

    Article  Google Scholar 

  18. Bongard O, Bounameaux H. Clinical investigation of skin microcirculation. Dermatology. 1993;186:6.

    Article  PubMed  CAS  Google Scholar 

  19. Vongsavan N, Mattews B. Some aspects of the use of laser Doppler flow meters for recording tissue blood flow. Exp Physiol. 1993;78:1.

    PubMed  CAS  Google Scholar 

  20. Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;254:56.

    Article  PubMed  CAS  Google Scholar 

  21. Nilsson GE, Tenland T, Oberg PA. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng. 1980;27:597.

    Article  PubMed  CAS  Google Scholar 

  22. Timar-Banu O, et al. Development of noninvasive and quantitative methodologies for the assessment of chronic ulcers and scars in humans. Wound Repair Regen. 2001;9:123.

    Article  PubMed  CAS  Google Scholar 

  23. Wardell K, Jakobsson A, Nilsson GE. Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng. 1993;40:309.

    Article  PubMed  CAS  Google Scholar 

  24. Gschwandtner ME, et al. Laser Doppler imaging and capillary microscopy in ischemic ulcers. Atherosclerosis. 1999;142:225.

    Article  PubMed  CAS  Google Scholar 

  25. Graham JS, et al. Bioengineering methods employed in the study of wound healing of sulphur mustard burns. Skin Res Technol. 2002;8:57.

    Article  PubMed  Google Scholar 

  26. Bircher AJ, Guy RH, Maibach HI. Skin pharmacology and dermatology. In: Shepard AP, Oberg PA, editors. Laser-Doppler blood flowmetry. Boston: Kluwer Academic; 1990. p. 141.

    Google Scholar 

  27. Van Neste D, et al. Agonist–antagonist interactions in the skin: comparison of effects of loratadine and cetirizine on skin vascular responses to prick tests with histamine and substance P. J Dermatol Sci. 1992;4:172.

    Article  PubMed  Google Scholar 

  28. Harrison DK, et al. A preliminary assessment of laser Doppler perfusion imaging in human skin using the tuberculin reaction as a model. Clin Phys Physiol Meas. 1993;14:241.

    CAS  Google Scholar 

  29. Bircher AJ, de Boer E, Agner T, Walberg J, Serup J. Guidelines for the measurements of cutaneous blood flow by Laser-Doppler spectroscopy. Contact Dermatitis. 1994;30:65–72.

    Article  PubMed  CAS  Google Scholar 

  30. Heden P. Plastic and reconstructive surgery. In: Shepard AP, Oberg PA, editors. Laser-Doppler blood flowmetry. Boston: Kluwer Academic; 1990. p. 175.

    Google Scholar 

  31. Olavi A, Kolari PJ, Esa A. Edema and lower leg perfusion in patients with post traumatic dysfunction. Acupunct Electrother Res. 1991;16:11.

    Google Scholar 

  32. Fagrell B. Peripheral vascular-diseases. In: Shepard AP, Oberg PA, editors. Laser-Doppler blood flowmetry. Boston: Kluwer Academic; 1990. p. 214.

    Google Scholar 

  33. Schubert V. The influence of local heating on skin microcirculation in pressure ulcers, monitored by a combined laser Doppler and transcutaneous oxygen tension probe. Clin Physiol. 2000;6:413.

    Article  Google Scholar 

  34. Gschwandtner ME, et al. Microcirculation in venous ulcer and the surrounding skin: findings with capillary microscopy and a laser Doppler imager. Eur J Clin Invest. 1999;29:708.

    Article  PubMed  CAS  Google Scholar 

  35. Bollinger A, Fagrell B. Clinical capillaroscopy. A guide to its use in clinical research and practice. Toronto: Hofgrefe and Hubert; 1990. 7.

    Google Scholar 

  36. Fagrell B. Vital microscopy and the pathophysiology of deep venous insufficiency. Int Angiol. 1995;14:18.

    PubMed  CAS  Google Scholar 

  37. Essex TJH, Byrne PO. A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng. 1991;13:189.

    Article  PubMed  CAS  Google Scholar 

  38. Sibenge S, Gawkrodger DJ. Rosacea: a study of clinical patterns, blood flow and the role of Demodex folliculorum. J Am Acad Dermatol. 1992;26:590.

    Article  PubMed  CAS  Google Scholar 

  39. Tur E, Brenner S. Cutaneous blood flow measurements for the detection of malignancy in pigmented skin lesion. Dermatology. 1992;184:8.

    Article  PubMed  CAS  Google Scholar 

  40. Gerlach JV. Uber das hautatmen. Arch Anat Physiol. 1851;431.

    Google Scholar 

  41. Sheffield PJ. Measuring tissue oxygen tension: a review. Undersea Hyperb Med. 1998;25:179.

    PubMed  CAS  Google Scholar 

  42. Rooke TW. The use of transcutaneous oximetry in the noninvasive vascular laboratory. Int Angiol. 1992;11:36.

    PubMed  CAS  Google Scholar 

  43. Nemeth AJ, Eaglstein WH, Falanga V. Clinical parameters and transcutaneous oxygen measurements for the prognosis of venous ulcer. J Am Acad Dermatol. 1989;20:186.

    Article  PubMed  CAS  Google Scholar 

  44. Silverstein JL, et al. Cutaneous ipoxia in patients with systemic sclerosis (scleroderma). Arch Dermatol. 1988;124:1379.

    Article  PubMed  CAS  Google Scholar 

  45. Berry RB, et al. Trascutaneous oxygen tension as index of maturity in hypertrophic scars treated by compression. Br J Plast Surg. 1985;38:163.

    Article  PubMed  CAS  Google Scholar 

  46. Romanelli M, et al. The effect of topical nitroglycerin on transcutaneous oxygen. Br J Dermatol. 1991;124:354.

    Article  PubMed  CAS  Google Scholar 

  47. Takiwaki H, et al. The influence of cutaneous factors on the transcutaneous pO2 and pCO2 at various body sites. Br J Dermatol. 1991;125:243.

    Article  PubMed  CAS  Google Scholar 

  48. Hesus E. Die Reaktion des Schweissen beim gesunden Menschen. Monatsschr Prakt Dermatol. 1892;14:343.

    Google Scholar 

  49. Schade H, Marchionni A. Der Sauremantel der Haut nach Gaskettenmessungen. Klin Wochenschr. 1928;7:12.

    Article  CAS  Google Scholar 

  50. Dikstein S, Zlotogorski A. Skin surface hydrogen ion concentration (pH). In: Levegue JL, editor. Cutaneous investigation in health and disease: noninvasive methods and instrumentation. New York/Basel: Marcel Dekker; 1988. p. 59–78.

    Google Scholar 

  51. Peker J, Wahlbas W. Zur Methodic der pH-Messung der Hautoberflache. Dermatol Wochenschr. 1972;158:572.

    CAS  Google Scholar 

  52. von Kaden H, Oelssner W, Kaden A, Schirmer E. Die Bestimmung des pH-Wertes in vivo mit Ionensensitiven Feldeffecttransistoren. Z Med Lab Diagn. 1991;32:114.

    PubMed  CAS  Google Scholar 

  53. Anderson DS. The acid–base balance of the skin. Br J Dermatol. 1951;63:283–96.

    Article  PubMed  CAS  Google Scholar 

  54. Glibbery AB, Mani R. pH in leg ulcers. Int J Microcirc Clin Exp. 1992;2:109.

    Google Scholar 

  55. Sayeg N, Dawson J, Bloom N, Sthal W. Wound ph as a predictor of skin graft survival. Curr Surg. 1988;45:23–4.

    Google Scholar 

  56. Varghese MC, et al. Local environment of chronic wounds under synthetic dressings. Arch Dermatol. 1986;122:52.

    Article  PubMed  CAS  Google Scholar 

  57. Romanelli M, et al. Evaluation of surface pH on venous leg ulcers under Allevyn dressings. In: Suggett A, Cherry G, Mani R, Eaglstein W, editors. International congress and symposium series, vol. 227. London: Royal Society of Medicine Press; 1998.

    Google Scholar 

  58. Yang WJ, Yang PP. Literature survey on biomedical applications of thermography. Biomed Mater Eng. 1992;2(1):7–18.

    PubMed  CAS  Google Scholar 

  59. Putley EH. The development of thermal imaging systems. In: Ring EFJ, Phillips B, editors. Recent advances in medical thermology. New York: Plenum Press; 1984. p. 151.

    Chapter  Google Scholar 

  60. Collins AJ, Ring EFJ. Measurement of inflammation in man and animals by radiometry. Br J Pharmacol. 1972;44(1):145.

    Article  PubMed  CAS  Google Scholar 

  61. Ring EFJ. Thermal imaging and therapeutic drugs. In: Gautherie M, editor. Biomedical thermology. New York: Alan R. Liss; 1982. p. 463.

    Google Scholar 

  62. Stuttgen G. Dermatology and thermography. In: Engel JM, Flesch U, Stuttgen G, editors. Thermological methods. Weinheim: Verlag Chemie; 1984. p. 257.

    Google Scholar 

  63. Ring EFJ. Skin temperature measurement. Bioeng Skin. 1986;2:15–30.

    Google Scholar 

  64. Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb R. In vivo confocal scanning laser microscopy of human skin. Advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113:293–301.

    Article  PubMed  CAS  Google Scholar 

  65. Aghassi D, Anderson RR, Gonzalez S. Confocal laser microscopic imaging of actinic keratoses in vivo: a preliminary report. J Am Acad Dermatol. 2000;43:42–8.

    Article  PubMed  CAS  Google Scholar 

  66. Gonzalez S, Rajadhyaksha M, Rubinstein G, Anderson RR. Characterization of psoriasis in vivo by reflectance confocal microscopy. J Med. 1999;30:337–56.

    PubMed  CAS  Google Scholar 

  67. Ferretti A, Boschi E, Stefani A, Saturnino S, Romanelli M, Lemmi M, Giovannetti A, Longoni B, Mosca F. Angiogenesis and nerve regeneration in a model of human skin equivalent transplant. Life Sci. 2003;73:1985–94.

    Article  PubMed  CAS  Google Scholar 

  68. Gu XH, Terenghi G, Kangesu T, Navsaria HA, Springaal DR, Leigh IM, Green CJ, Polka JM. Regeneration pattern of blood vessels and nerves in cultured keratinocyte grafts assessed by confocal laser scanning microscopy. Br J Dermatol. 1995;132:376–83.

    Article  PubMed  CAS  Google Scholar 

  69. Vardaxis NJ, Brans TA, Boon ME, Kreis RW, Marres LM. Confocal laser scanning microscopy of porcine skin: implications for human wound healing. J Anat. 1997;190:601–11.

    Article  PubMed  Google Scholar 

  70. Faglia E, Clerici G, Clerissi J, et al. Long term prognosis of diabetic patients with critical limb ischaemia. Diabetes Care. 2009;32(5):822–7.

    Article  PubMed  Google Scholar 

  71. Prompers L, Schaper NJ, Apelqvist J, et al. Prediction of outcomes in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease: the EURODIALE study. Diabetologica. 2008;51:747–55.

    Article  CAS  Google Scholar 

  72. Coleridge Smith PS, Thomas P, Scurr J, Dormandy J. Causes of venous ulceration: a new hypothesis. Br Med J. 1988;296:1726–7.

    Article  CAS  Google Scholar 

  73. Fagrell B. Microcirculatory disturbances – the final cause for venous leg ulcers? Vasa. 1993;11:101–3.

    Google Scholar 

  74. Falanga V, Eaglestein WH. The trap hypothesis of venous ulceration. Lancet. 1993;17:1006–8.

    Article  Google Scholar 

  75. Tooke JE, Oostergren JE, Fagrell B. Synchronous assessment of skin microcirculation by laser Doppler flowmetery and dynamic capillaroscopy. Int J Microcirc Clin Exp. 1983;2:277–84.

    PubMed  CAS  Google Scholar 

  76. Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type 1 diabetic patients. Clin Sci. 1995;89:467–74.

    PubMed  CAS  Google Scholar 

  77. Hammad LF. A study of the mechanical and microcirculatory properties of skin subject to venous ulceration. PhD thesis, University of Southampton; 2000.

    Google Scholar 

  78. Japp AJ, Shore AC, Stockman AJ, Tooke JE. Skin capillary density in subjects with impaired glucose tolerance in patients with type 2 diabetes. Diabet Med. 1996;13:92–102.

    Google Scholar 

  79. Rayman G, Hassan AAK, Tooke JE. Bloodflow in the skin of the foot related to posture in diabetes. Br Med J. 1986;292:87–90.

    Article  CAS  Google Scholar 

  80. Thanh DL, Veves A. A review of the mechanisms implicated in the pathogenesis of the diabetic foot. Int J Low Extrem Wounds. 2005;4(3):154–9.

    Article  Google Scholar 

  81. Schramm JC, Dinh T, Veves A. Microvascular changes in the diabetic foot. Int J Low Extrem Wounds. 2006;5(3):149–59.

    Article  PubMed  Google Scholar 

  82. Khan F, Green FC, Forsyth JS, Greene SA, Morris AD, Belch J. Impaired microvascular function in normal children; effects of adiposity and poor glucose handling. J Physiol. 2003;551:705–11.

    Article  PubMed  CAS  Google Scholar 

  83. Gates PE, Strain WD, Shore AC. Human endothelial function and microvascular aging. Exp Physiol. 2009;94:311–6.

    Article  PubMed  Google Scholar 

  84. National Institute of Clinical Excellence. http://www.nice.org.uk/. United Kingdom. Accessed Dec 2011.

  85. Yao JST, Hobbs JT, Irvine WT. Ankle systolic pressure measurements in arterial diseases affecting the lower extremities. Br J Surg. 1969;56:676.

    Article  PubMed  CAS  Google Scholar 

  86. Caruana MF, Bradbury AW, Adam DJ. The validity, reliability, reproducibility and extended utility of ankle to brachial pressure index in current vascular surgical practice. Eur J Endovascr Surg. 2005;29:443–51.

    Article  CAS  Google Scholar 

  87. Patel P, Roberts G, Beford J, Tarlin S, Collins C, Woodd D, Mani R. What can you do when you can’t measure ankle brachial pressure index (ABPI) in patients with leg ulcers? Wound Repair Regen. 2007;15:A111–51.

    Article  Google Scholar 

  88. Williams DT, Price P, Harding KG. The influence of diabetes and lower limb arterial disease on cutaneous perfusion. J Vasc Surg. 2006;44(4):770–5.

    Article  PubMed  Google Scholar 

  89. Smith FC, Shearman CP, Simms MH, Gwynn BR. Falsely elevated ankle pressures in severe leg ischaemia: the pole test-an alternative approach. Eur J Endovasc Surg. 1994;8:408–12.

    CAS  Google Scholar 

  90. Sieber CC, Jaeger K. Duplex scanning: a useful tool for non invasive-assessment of vascular disease. Vasc Med Rev. 1992;3:95–114.

    Google Scholar 

  91. Doppler C. Ueber das farlige licht doppelstterne und einiger anderer gestirned des himmels. Abhandle. D. Konigl. Bohmischen Ges Wiss Sers. 1843;2:465–82.

    Google Scholar 

  92. Collins CS, Mani R. The role of ultrasound in lower extremity wound management. Int J Low Extrem Wounds. 2002;1(4):221–7.

    Article  Google Scholar 

  93. Goodacre S, Sampson F, Stevenson M, Wailoo A, Sutton A, Thomas S, Locker T and Ryan A. Measurement of the clinical and cost-effectiveness of non-invasive strategies for deep vein thrombosis. Health Technol Assess 2006;10(15).

    Google Scholar 

  94. Baker SR, Burnand K, Sommerville KG, et al. Comparison of venous reflux assessed by duplex scanning and descending phlebography in chronic venous insufficiency. Lancet. 1993;341:400–3.

    Article  PubMed  CAS  Google Scholar 

  95. McCollum PT, Spence V, Walker WF. Circumferential skin blood flow measurements in the ischaemic limb. Br J Surg. 1985;72:310–2.

    Article  PubMed  CAS  Google Scholar 

  96. Dowd GSE, Linkje K, Ross R, Bentley G. The transcutaneous measurement of oxygen in normal and abnormal skin. J Bone Joint Surg 1982;64B:248–9.

    Google Scholar 

  97. Korzon-Burakowska A, Edmonds ME. Role of the microcirculation in diabetic foot ulceration. Int J Low Extrem Wounds. 2006;5(5):129–30.

    Google Scholar 

  98. Staxrud LE, Kvernbo K, Salerud EG. Spatial and temporal evaluation of locally induced skin trauma recorded with laser Doppler techniques. Mircovasc Res. 1996;51:69–79.

    Article  CAS  Google Scholar 

  99. Mani R. Transcutaneous measurements of oxygen tension in venous ulcer disease. Vascular Medicine Review 1995;6(2):121–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Mani D.Sc., FACA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Romanelli, M., Dini, V., Mani, R. (2012). Skin and Vascular Assessments. In: Mani, R., Romanelli, M., Shukla, V. (eds) Measurements in Wound Healing. Springer, London. https://doi.org/10.1007/978-1-4471-2987-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2987-5_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2986-8

  • Online ISBN: 978-1-4471-2987-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics