Power Electronic Interfaces in Smart Grids

Part of the Power Systems book series (POWSYS)


The Smart Grid services are closely linked to many specific ideas and techniques. Some of them are listed below, as an exemplification.


Wind Farm Smart Grid Maximum Power Point Tracking Superconducting Magnetic Energy Storage Power Electronic Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adebisi B, Treytl A, Haidine A, Portnoy A, Shan R, Lund D, Pille H, Honary B (2011) IP-centric high rate narrowband PLC for smart grid applications. IEEE Commun Mag 49(12):46–54CrossRefGoogle Scholar
  2. 2.
    Ahn MC, Ko TK (2011) Proof-of-concept of a smart fault current controller with a superconducting coil for the smart grid. IEEE Trans Appl Supercond 21(3):2201–2204CrossRefGoogle Scholar
  3. 3.
    Akagi H (2005) Active harmonic filters. Proc IEEE 93(12):2128–2141CrossRefGoogle Scholar
  4. 4.
    Akagi H (2005) The state-of-the-art of active filters for power conditioning. In: European conference on power electronics and applications, Dresden, 15 pp. –P.15Google Scholar
  5. 5.
    Akagi H, Matsumura I (2011) Overvoltage mitigation of inverter-driven motors with long cables of different lengths. IEEE Trans Ind Appl 47(4):1741–1748CrossRefGoogle Scholar
  6. 6.
    AlAbdulkarim L, Lukszo Z (2009) Smart metering for the future energy systems in the Netherlands. In: 4th international conference on critical infrastructures, CRIS 2009, Linköping, pp 1–7, April 2009Google Scholar
  7. 7.
    Amjadi Z, Williamson SS (2011) Prototype design and controller implementation for a battery-ultracapacitor hybrid electric vehicle energy storage system. IEEE Trans Smart Grid PP(99):1Google Scholar
  8. 8.
    Arai J, Iba K, Funabashi T, Nakanishi Y, Koyanagi K, Yokoyama R (2008) Power electronics and its applications to renewable energy in Japan. IEEE Circuits Syst Mag 8(3):52–66CrossRefGoogle Scholar
  9. 9.
    Bach B, Wilhelmer D, Palensky P (2010) Smart buildings, smart cities and governing innovation in the new millennium. In: 8th IEEE international conference on industrial informatics (INDIN), Osaka, pp 8–14, July 2010Google Scholar
  10. 10.
    Bell S, Cookson T, Cope S, Epperly R, Fischer A, Schlegel D, Skibinski G (2001) Experience with variable-frequency drives and motor bearing reliability. IEEE Trans Ind Appl 37(5):1438–1446CrossRefGoogle Scholar
  11. 11.
    Bennett C, Highfill D (2008) Networking AMI smart meters. In: IEEE energy 2030 conference, ENERGY 2008, Atlanta, pp 1–8, Nov 2008Google Scholar
  12. 12.
    Benysek G (2007) A probabilistic approach to optimizing power rating of interline power flow controllers in distributed generation power systems. J Chin Inst Eng 30(7):1213–1221CrossRefGoogle Scholar
  13. 13.
    Benysek G (2007) Improvement in the quality of delivery of electrical energy using power electronics systems. Springer, LondonGoogle Scholar
  14. 14.
    Benysek G, Kazmierkowski MP, Popczyk J, Strzelecki R (2011) Power electronic systems as crucial part of a smart grid infrastructure a survey. Bull Pol Acad Sci Tech Sci 59(4):455–473Google Scholar
  15. 15.
    Benzi F, Anglani N, Bassi E, Frosini L (2011) Electricity Smart Meters Interfacing the Households. IEEE Trans Ind Electron 58(10):4487–4494CrossRefGoogle Scholar
  16. 16.
    Berthold F, Blunier B, Bouquain D, Williamson S, Miraoui A (2011) PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities. In: Vehicle power and propulsion conference (VPPC). IEEE, Chicago, pp 1–6, Sept 2011Google Scholar
  17. 17.
    Binder A, Muetze A (2008) Scaling effects of inverter-induced bearing currents in AC machines. IEEE Trans Ind Appl 44(3):769–776CrossRefGoogle Scholar
  18. 18.
    Blaabjerg F, Chen Z (2006) Power electronics for modern wind turbines. Synthesis lectures on power electronics. Morgan and Claypool, San RafaelGoogle Scholar
  19. 19.
    Blaabjerg F, Iov F, Terekes T, Teodorescu R, Ma K (2011) Power electronics—key technology for renewable energy systems. In: Power electronics, drive systems and technologies conference (PEDSTC), pp 445–466, 2 Feb 2011Google Scholar
  20. 20.
    Boldea I (2006) The electric generators handbook: variable speed generators. Electric power engineering series, vol 2. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  21. 21.
    Boroyevich D, Cvetkovic I, Dong D, Burgos R, Wang F, Lee F (2010) Future electronic power distribution systems a contemplative view. In: 12th international conference on optimization of electrical and electronic equipment (OPTIM), pp 1369–1380, May 2010Google Scholar
  22. 22.
    Brown T, Yang M (2008) Radio wave propagation in smart buildings at long wavelengths. In: IET seminar on electromagnetic propagation in structures and buildings, pp 1–17, Dec 2008Google Scholar
  23. 23.
    Busse D, Erdman J, Kerkman R, Schlegel D, Skibinski G (1997) Bearing currents and their relationship to PWM drives. IEEE Trans Power Electron 12(2):243–252CrossRefGoogle Scholar
  24. 24.
    Busse D, Erdman J, Kerkman R, Schlegel D, Skibinski G (1997) The effects of PWM voltage source inverters on the mechanical performance of rolling bearings. IEEE Trans Ind Appl 33(2):567–576CrossRefGoogle Scholar
  25. 25.
    Calais M, Myrzik J, Spooner T, Agelidis V (2002) Inverters for single-phase grid connected photovoltaic systems-an overview. In: IEEE 33rd annual power electronics specialists conference, PESC 02, vol 4, pp 1995–2000Google Scholar
  26. 26.
    Chowdary DD, Kumar GVN (2010) Mitigation of voltage sags in a distribution system due to three phase to ground fault using DVR. Indian J Eng Mater Sci 17(2):113–122Google Scholar
  27. 27.
    Christopoulos C (1992) Electromagnetic compatibility. I: General principles. Power Eng J 6(2):89–94CrossRefGoogle Scholar
  28. 28.
    Culshaw B, Michie C, Gardiner P, McGown A (1996) Smart structures and applications in civil engineering. Proc IEEE 84(1):78–86CrossRefGoogle Scholar
  29. 29.
    Deconinck G, Decroix B (2009) Smart metering tariff schemes combined with distributed energy resources. In: Fourth international conference on Critical infrastructures, CRIS 2009, pp 1–8, April 2009Google Scholar
  30. 30.
    Divan D, Johal H (2005) Distributed FACTS—a new concept for realizing grid power flow Control. In: IEEE 36th power electronics specialists conference, PESC ’05, pp 8–14, June 2005Google Scholar
  31. 31.
    Divan D, Johal H (2007) Distributed FACTS—a new concept for realizing grid power flow control. IEEE Trans Power Electron 22(6):2253–2260CrossRefGoogle Scholar
  32. 32.
    Divan DM, Brumsickle WE, Schneider RS, Kranz B, Gascoigne RW, Bradshaw DT, Ingram MR, Grant IS (2007) A distributed static series compensator system for realizing active power flow control on existing power lines. IEEE Trans Power Deliv 22(1):642–649CrossRefGoogle Scholar
  33. 33.
    Dunlop J (2009) Photovoltaic systems. American Technical Publishers, Orland ParkGoogle Scholar
  34. 34.
    Ekanayake J, Jenkins N, Liyanage K, Wu J, Yokoyama A (2011) Smart grid: technology and applications. Wiley, New YorkGoogle Scholar
  35. 35.
    Elsworth C (2010) The smart grid and electric power transmission. Energy policies, politics and prices. Nova Science, HauppaugeGoogle Scholar
  36. 36.
    Emadi A (2009) Integrated power electronic converters and digital control. Power electronics and applications series. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  37. 37.
    Emadi A, Nasiri A, Bekiarov S (2005) Uninterruptible power supplies and active filters. Power electronics and applications series. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Enjeti P, Palma L, Todorovic M (2009) Power conditioning systems for fuel cell applications. IEEE power engineering series. Wiley, New YorkGoogle Scholar
  39. 39.
    Erickson R, Rogers A (2009) A microinverter for building-integrated photovoltaics. In: Twenty-fourth annual IEEE applied power electronics conference and exposition, APEC 2009, pp 911–917, Feb 2009Google Scholar
  40. 40.
    Ericsson G (2010) Cyber security and power system communication—essential parts of a smart grid infrastructure. IEEE Trans Power Deliv 25(3):1501–1507CrossRefGoogle Scholar
  41. 41.
    Ertl H, Kolar J, Zach F (2002) A novel multicell DC–AC converter for applications in renewable energy systems. IEEE Tran Ind Electron 49(5):1048–1057CrossRefGoogle Scholar
  42. 42.
    Essakiappan S, Enjeti P, Balog R, Ahmed S (2011) Analysis and mitigation of common mode voltages in photovoltaic power systems. In: IEEE energy conversion congress and exposition (ECCE), pp 28–35, Sept 2011Google Scholar
  43. 43.
    Flick T, Morehouse J, Veltsos C (2010) Securing the smart grid: next generation power grid security. Elsevier Science, AmsterdamGoogle Scholar
  44. 44.
    Fox-Penner P (2010) Smart power: climate change, the smart grid, and the future of electric utilities. Island Press, WashingtonGoogle Scholar
  45. 45.
    Gamauf T, Leber T, Pollhammer K, Kupzog F (2011) A generalized load management gateway coupling smart buildings to the grid. In: AFRICON, pp 1–5, Sept 2011Google Scholar
  46. 46.
    Gellings C (2009) The smart grid: enabling energy efficiency and demand response. Fairmont Press, LilburnGoogle Scholar
  47. 47.
    Ginot N, Mannah M, Batard C, Machmoum M (2010) Application of power line communication for data transmission over PWM network. IEEE Trans Smart Grid 1(2):178–185CrossRefGoogle Scholar
  48. 48.
    Gungor V, Lu B, Hancke G (2010) Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans Ind Electron 57(10):3557–3564CrossRefGoogle Scholar
  49. 49.
    Hanigovszki N, Landkildehus J, Spiazzi G, Blaabjerg F (2006) An EMC evaluation of the use of unshielded motor cables in AC adjustable speed drive applications. IEEE Trans Power Electron 21(1):273–281CrossRefGoogle Scholar
  50. 50.
    Hartmann M, Ertl H, Kolar J (2010) EMI filter design for high switching frequency three-phase/level PWM rectifier systems. In: Twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), pp 986–993, Feb 2010Google Scholar
  51. 51.
    Heier S (1998) Grid integration of wind energy conversion systems. Wiley, ChichesterGoogle Scholar
  52. 52.
    Hertzog C (2011) Smart grid dictionary plus. Centage learning series in renewable energies. Cengage Learning, New YorkGoogle Scholar
  53. 53.
    Hingorani N, Gyugyi L (2000) Understanding FACTS: concepts and technology of flexible AC transmission systems. IEEE Press, New York Google Scholar
  54. 54.
    Huang Y, Shen M, Peng F, Wang J (2006) Source inverter for residential photovoltaic systems. IEEE Trans Power Electron 21(6):1776–1782CrossRefGoogle Scholar
  55. 55.
    Jalbrzykowski S, Citko T (2009) A bidirectional DC–DC converter for renewable energy systems. Bull Pol Acad Sci Tech Sci 57(4):363–368Google Scholar
  56. 56.
    Jiang Y, Pan J (2009) Single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter system. Bull Pol Acad Sci Tech Sci 57(4):355–361MathSciNetGoogle Scholar
  57. 57.
    Karimi H, Nikkhajoei H, Iravani R (2008) Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans Power Deliv 23(1):493–501CrossRefGoogle Scholar
  58. 58.
    Kastner W, Neugschwandtner G, Soucek S, Newmann H (2005) Communication systems for building automation and control. Proc IEEE 93(6):1178–1203CrossRefGoogle Scholar
  59. 59.
    Kazimierczuk M (2009) High-frequency magnetic components. Wiley, New YorkGoogle Scholar
  60. 60.
    Kazmierkowski M, Jasinski M, Sorensen HC (2008) Ocean waves energy converter—wave dragon MW. Electr Rev 84(2):8–14Google Scholar
  61. 61.
    Kazmierkowski M, Krishnan R, Blaabjerg F (2002) Control in power electronics: selected problems. Academic Press series in engineering. Academic Press, BostonGoogle Scholar
  62. 62.
    Kazmierkowski MP, Jasinski M (2010) Electronics power, for renewable sea wave energy. In: Proceedings of the 12th international conference on optimization of electrical and electronic equipment, OPTIM, PTS I-IV, IEEE, IAS; IEEE, PELS; IEEE, IES, Brasov, pp 1381–1386, 20–21 May 2010Google Scholar
  63. 63.
    Kazmierkowski MP, Jasinski M, Wrona G (2011) DSP-based control of grid-connected power converters operating under grid distortions. IEEE Trans Ind Inform 7(2):204–211CrossRefGoogle Scholar
  64. 64.
    Kempski A, Smolenski R, Bojarski J (2005) Statistical model of electrostatics discharge hazard in bearings of induction motor fed by inverter. J Electrost 63:475–480CrossRefGoogle Scholar
  65. 65.
    Kempski A, Smolenski R, Strzelecki R (2002) Common mode current paths and their modeling in PWM inverter-fed drives. In: Proceedings of IEEE 33rd annual power electronics specialists conference records, PESC’02, vols 1–4, pp 1551–1556, Cairns, Australia, 23–27 June 2002Google Scholar
  66. 66.
    Kempski A, Strzelecki R, Smolenski R, Fedyczak Z (2001) Bearing current path and pulse rate in PWM-inverter-fed induction motor drive. In: IEEE 32nd annual power electronics specialists conference, PESC 2001, vol 4, pp 2025–2030Google Scholar
  67. 67.
    Keyhani A (2011) Design of smart power grid renewable energy systems. Wiley, New YorkGoogle Scholar
  68. 68.
    Kim S, Kwon EY, Kim M, Cheon JH, Ju S-h, Lim Y-h, Choi M-s (2011) A secure smart-metering protocol over power-line communication. IEEE Trans Power Deliv 26(4):2370–2379. doi: 10.1109/TPWRD.2011.2158671 Google Scholar
  69. 69.
    Klytta M, Strzelecki R, Kempski A (1999) Conducted EMC effects on the motor–side of VSI-FED induction motor drives. In: Power electronics devices compatibility–PEDC ’99: international workshop on acoustic noise and other aspects of power electronics compatibility, Slubice, Polska, Technical University of Zielona Gora. University of Applied Sciences Giessen-Friedberg, Zielona Gora, Technical University Press, pp 38–51Google Scholar
  70. 70.
    Klytta M, Strzelecki R, Smolenski R (2000) Disturbance effects by longer motor cables of VSI-FED drives. Tehnicna Elektrodinamika: Silova elektronika ta energoefektivnist 1:9–12Google Scholar
  71. 71.
    Ko Y, Jeong H-G, Lee K-B, Lee D-C, Kim J-M (2011) Diagnosis of the open-circuit fault in three-parallel voltage-source converver for a high-power wind turbine. In: IEEE Energy conversion congress and exposition (ECCE), pp 877–882, Sept 2011Google Scholar
  72. 72.
    Konefal T, Dawson J, Denton A, Benson T, Christopoulos C, Marvin A, Porter S, Thomas D (2001) Electromagnetic coupling between wires inside a rectangular cavity using multiple-mode-analogous-transmission-line circuit theory. IEEE Trans Electromagn Compat 43(3):273–281CrossRefGoogle Scholar
  73. 73.
    Koyama Y, Tanaka M, Akagi H (2010) Modeling and analysis for simulation of common-mode noises produced by an inverter-driven air conditioner. In: International power electronics conference (IPEC), pp 2877–2883, June 2010Google Scholar
  74. 74.
    Laaksonen H (2010) Protection principles for future microgrids. IEEE Trans Power Electron 25(12):2910–2918CrossRefGoogle Scholar
  75. 75.
    Lai J-S (2009) Power conditioning circuit topologies. IEEE Ind Electron Mag 3(2):24–34CrossRefGoogle Scholar
  76. 76.
    Lee P, Lai L (2009) A practical approach of smart metering in remote monitoring of renewable energy applications. In: IEEE power energy society general meeting, PES ’09, pp 1–4, July 2009Google Scholar
  77. 77.
    Li YW, Vilathgamuwa DM, Loh PC, Blaabjerg F (2007) A dual-functional medium voltage level DVR to limit downstream fault currents. IEEE Trans Power Electron 22(4):1330–1340CrossRefGoogle Scholar
  78. 78.
    Liu C, Chau K, Zhang X (2010) An efficient wind—photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine. IEEE Trans Ind Electron 57(3):831–839CrossRefGoogle Scholar
  79. 79.
    Liu W, Liu W, Dirker J, Dirker J, van Wyk J, van Wyk J (2008) Power density improvement in integrated electromagnetic passive modules with embedded heat extractors. IEEE Trans Power Electron 23(6):3142–3150CrossRefGoogle Scholar
  80. 80.
    Luo F, Ye H (2006) Essential DC/DC converters. Taylor & Francis, Boca RatonGoogle Scholar
  81. 81.
    Magnusson P (2001) Transmission lines and wave propagation. CRC Press, Boca RatonGoogle Scholar
  82. 82.
    Milanovic JV, Zhang Y (2010) Modeling of FACTS devices for voltage sag mitigation studies in large power systems. IEEE Trans Power Deliv 25(4):3044–3052CrossRefGoogle Scholar
  83. 83.
    Mohagheghi S, Stoupis J, Wang Z (2009) Communication protocols and networks for power systems-current status and future trends. In: IEEE/PES power systems conference and exposition, PSCE ’09, pp 1–9, Mar 2009Google Scholar
  84. 84.
    Mohsenian-Rad A-H, Leon-Garcia A (2010) Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans Smart Grid 1(2):120–133CrossRefGoogle Scholar
  85. 85.
    Morvaj B, Lugaric L, Krajcar S (2011) Demonstrating smart buildings and smart grid features in a smart energy city. In: Proceedings of the 2011 3rd international youth conference on energetics (IYCE), pp 1–8, July 2011Google Scholar
  86. 86.
    Muetze A, Binder A (2007) Calculation of motor capacitances for prediction of the voltage across the bearings in machines of inverter-based drive systems. IEEE Trans Ind Appl 43(3):665–672CrossRefGoogle Scholar
  87. 87.
    Muetze A, Binder A (2007) Practical rules for assessment of inverter-induced bearing currents in inverter-fed AC motors up to 500 kW. IEEE Trans Ind Electron 54(3):1614–1622CrossRefGoogle Scholar
  88. 88.
    Muetze A, Binder A (2007) Techniques for measurement of parameters related to inverter-induced bearing currents. IEEE Trans Ind Appl 43(5):1274–1283CrossRefGoogle Scholar
  89. 89.
    Muetze A, Oh H (2008) Application of static charge dissipation to mitigate electric discharge bearing currents. IEEE Trans Ind Appl 44(1):135–143CrossRefGoogle Scholar
  90. 90.
    Muetze A, Tamminen J, Ahola J (2011) Influence of motor operating parameters on discharge bearing current activity. IEEE Trans Ind Appl 47(4):1767–1777CrossRefGoogle Scholar
  91. 91.
    Ochoa L, Harrison G (2011) Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Trans Power Syst 26(1):198–205CrossRefGoogle Scholar
  92. 92.
    Ogasawara S, Akagi H (1996) Modeling and damping of high-frequency leakage currents in PWM inverter-fed AC motor drive systems. IEEE Trans Ind Appl 32(5):1105–1114CrossRefGoogle Scholar
  93. 93.
    Ogasawara S, Akagi H (2000) Analysis and reduction of EMI conducted by a PWM inverter-fed AC motor drive system having long power cables. In: IEEE 31st annual power electronics specialists conference, 2000, PESC 00, vol 2, pp 928–933Google Scholar
  94. 94.
    Onar OC, Khaligh AA (2011) Novel integrated magnetic structure based DC/DC converter for hybrid battery/ultracapacitor energy storage systems. IEEE Trans Smart Grid PP(99):1Google Scholar
  95. 95.
    Paul C (1992) Derivation of common impedance coupling from the transmission-line equations. IEEE Trans Electromagn Compat 34(3):315–319CrossRefGoogle Scholar
  96. 96.
    Paul C, Mcknight J (1979) Prediction of crosstalk involving twisted pairs of wires-part II: A simplified low-frequency prediction model. IEEE Trans Electromagn Compat EMC-21(2):105–114Google Scholar
  97. 97.
    Pedrasa M, Spooner T, MacGill I (2010) Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans Smart Grid 1(2):134–143CrossRefGoogle Scholar
  98. 98.
    Peterson SB, Whitacre JF, Apt J (2010) The economics of using plug-in hybrid electric vehicle battery packs for grid storage. J Power Sources, 195(8, SI):2377–2384Google Scholar
  99. 99.
    Ran L, Xiang D, Kirtley J (2011) Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine. IEEE Trans Ind Appl 47(3):1498–1506CrossRefGoogle Scholar
  100. 100.
    Roncero-Sanchez P, Acha E, Ortega-Calderon JE, Feliu V, Garcia-Cerrada A (2009) A versatile control scheme for a dynamic voltage restorer for power-quality improvement. IEEE Trans Power Deliv 24(1):277–284CrossRefGoogle Scholar
  101. 101.
    Rothenhagen K, Jasinski M, Kazmierkowski MP (2008) Connection grid, of multi-megawatt clean wave energy power plant under weak grid condition. In: 13th International power electronics and motion control conference, EPE PEMC, vols 1–5, pp 1904–1910, Poznan University, Faculty of Electronic Engineering; Polish society Theoret and Applications of Electrical engineering, Poznan Sect, Poznan, Poland, 01–03 Sept 2008Google Scholar
  102. 102.
    Roytelman I, Melnik V, Lee S, Lugtu R (1996) Multi-objective feeder reconfiguration by distribution management system. IEEE Trans Power Syst 11(2):661–667Google Scholar
  103. 103.
    Schulz D (2009) Improved grid integration of wind energy systems. Bull Pol Acad Sci Tech Sci 57(4):311–315Google Scholar
  104. 104.
    Shami U, Akagi H (2010) Identification and discussion of the origin of a shaft end-to-end voltage in an inverter-driven motor. IEEE Trans Power Electron 25(6):1615–1625CrossRefGoogle Scholar
  105. 105.
    Simoes M, Farret F (2007) Renewable energy systems: design and analysis with induction generators. CRC PRESS, New YorkGoogle Scholar
  106. 106.
    Singh N, Kliokys E, Feldmann H, Kussel R, Chrustowski R, Joborowicz C (1998) Power system modelling and analysis in a mixed energy management and distribution management system. IEEE Trans Power Syst 13(3):1143–1149CrossRefGoogle Scholar
  107. 107.
    Skibinski G, Kerkman R, Schlegel D (1999) EMI emissions of modern PWM AC drives. IEEE Ind Appl Mag 5(6):47–80CrossRefGoogle Scholar
  108. 108.
    Smolenski R, Kempski A, Bojarski J (2010) Statistical approach to discharge bearing currents. COMPEL Int J Comput Math Electr Electron Eng 29(3):647–666MATHCrossRefGoogle Scholar
  109. 109.
    Sood P, Lipo T (1988) Power conversion distribution system using a high-frequency AC link. IEEE Trans Ind Appl 24(2):288–300CrossRefGoogle Scholar
  110. 110.
    Sood V (2004) HVDC and FACTS controllers: applications of static converters in power systems. Kluwer international series in engineering and computer science: power electronics and power systems. Kluwer Academic, DordrechtGoogle Scholar
  111. 111.
    Sourkounis C, Ni B, Richter F (2009) Comparison of energy storage management methods to smooth power fluctuations of wind parks. Electr Rev 85(10):196–200Google Scholar
  112. 112.
    Strzelecki R, Benysek G (2008) Power electronics in smart electrical energy networks. Power systems. Springer, LondonCrossRefGoogle Scholar
  113. 113.
    Strzelecki R, Benysek G, Fedyczak Z, Bojarski J (2002) Interline power flow controller—Probabilistic approach. In: Proceedings of IEEE 33rd annual power electronics specialists conference records, PESC’02, vols 1–4, pp 1037–1042, Cairns, Australia, 23–27 June 2002Google Scholar
  114. 114.
    Strzelecki R, Benysek G, Jarnut M (2007) Interconnection of the customer-side resources using single phase VAPF. Electr Rev 83(10):59–65, 5th international conference and workshop on compatibility in power electronics, Gdansk, Poland, 29 May–01 June 2007Google Scholar
  115. 115.
    Strzelecki R, Jarnut M, Kot E, Kempski A, Benysek G (2003) Multilevel voltage source power quality conditioner. In: Proceedings of IEEE 34th annual power electronics specialists conference records, PESC’03, vols 1–4, pp 1043–1048, IEEE PELS, Acapulco, 15–19 June 2003Google Scholar
  116. 116.
    Strzelecki R, Tunia H, Jarnut M, Meckien G, Benysek G (2003) Transfonnerless 1-phase active power line conditioners. In: Proceedings of IEEE 34th annual power electronics specialists conference records, PESC’03, vols 1–4, pp 321–326, IEEE PELS, Acapulco, 15–19 June 2003Google Scholar
  117. 117.
    Sui H, Lee W-J (2011) An AMI based measurement and control system in smart distribution grid. In: IEEE industrial and commercial power systems technical conference (ICPS), pp 1–5, May 2011Google Scholar
  118. 118.
    Timbus A, Larsson M, Yuen C (2009) Active management of distributed energy resources using standardized communications and modern information technologies. IEEE Trans Ind Electron 56(10):4029–4037CrossRefGoogle Scholar
  119. 119.
    Vazquez S, Lukic S, Galvan E, Franquelo L, Carrasco J (2010) Energy storage systems for transport and grid applications. IEEE Trans Ind Electron 57(12):3881–3895CrossRefGoogle Scholar
  120. 120.
    Vojdani A (2008) Smart integration. IEEE Power Energy Mag 6(6):71–79CrossRefGoogle Scholar
  121. 121.
    Wang L, Ho C-M, Canales F, Jatskevich J (2010) High-frequency modeling of the long-cable-fed induction motor drive system using TLM approach for predicting overvoltage transients. IEEE Trans Power Electron 25(10):2653–2664CrossRefGoogle Scholar
  122. 122.
    Wang L, Singh C, Kusiak A (2010) Wind power systems: applications of computational intelligence. Green energy and technology. Springer, HeidelbergGoogle Scholar
  123. 123.
    Wang X, Yi P (2011) Security framework for wireless communications in smart distribution grid. IEEE Trans Smart Grid 2(4):809–818CrossRefGoogle Scholar
  124. 124.
    Wasiak I, Hanzelka Z (2009) Integration of distributed energy sources with electrical power grid. Bull Polish Acad Sci Tech Sci 57(4):297–309Google Scholar
  125. 125.
    Williams T, Armstrong K (1999) EMC for systems and installations. Newnes, OxfordGoogle Scholar
  126. 126.
    Wrona G, Jasinski M, Kazmierkowski MP, Bobrowska-Rafal M, Korzeniewski M (2011) Floating point DSP TMS320F28xx in control systems for renewable energy sources RES. Electr Rev 87(6):73–78Google Scholar
  127. 127.
    Zhang X, Rehtanz C, Pal B (2006) Flexible AC transmission systems: modelling and control. Power systems. Springer, BerlinGoogle Scholar
  128. 128.
    Zhou X, Wang G, Lukic S, Bhattacharya S, Huang A (2009) Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application. In: IEEE energy conversion congress and exposition, ECCE, San Jose, pp 3930–3936, Sept 2009Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Computer Science, TelecommunicationsUniversity of Zielona Góra, Institute of Electrical EngineeringZielona GoraPoland

Personalised recommendations