Skip to main content

Overview of Epithelial Ovarian Carcinoma (EOC): Pathogenesis and General Considerations

  • Chapter
  • First Online:

Part of the book series: Essentials of Diagnostic Gynecological Pathology ((EDGP))

Abstract

Epithelial ovarian carcinomas (EOCs) comprise a heterogeneous group of neoplasms, the five most common subtypes being high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous. In recent years, our understanding of the underlying pathogenesis and initiating molecular events in the different tumor subtypes has greatly increased, and although EOC is often considered clinically as one disease, there is now an increasing realization that the various subtypes have a different natural behavior and prognosis. Although at present, adjuvant therapy is mainly dependent upon tumor stage and grade rather than cell type, this is likely to change in the future with the development of new chemotherapeutic agents and targeted therapies against specific tumor subtypes or even specific molecular abnormalities. It is now firmly established that there are two distinct types of ovarian serous carcinoma, low grade and high grade, the former being much less common and arising in many cases from a serous borderline tumor. Low-grade and high-grade serous carcinomas represent two distinct tumor types with a different underlying pathogenesis rather than low-grade and high-grade variants of the same neoplasm. There is now emerging and compelling evidence that many high-grade serous carcinomas (by far the most common subtype of EOC) actually arise from the epithelium of the distal fallopian tube. Primary ovarian mucinous carcinomas are relatively uncommon, mostly unilateral and stage I, and largely of so-called intestinal or enteric type. Most arise in a stepwise manner from a preexisting mucinous cystadenoma and mucinous borderline tumor. Endometrioid and clear cell carcinomas typically present as low-stage neoplasms and in many, or most, cases arise from endometriosis; the former are usually well differentiated, and there is now evidence that the majority of neoplasms reported in the past as high-grade endometrioid carcinoma are of serous type. WT1 is useful in this regard since it is a relatively specific marker of a serous phenotype. It is recommended that different subtypes of EOC are graded using different systems rather than employing a universal grading system. Since most serous carcinomas are likely to arise from the fallopian tube and endometrioid and clear cell carcinomas mostly evolve from endometriosis which, via a process of retrograde menstruation, is ultimately of endometrial origin in most cases, it can be considered that true primary EOCs are rare, analogous to the situation in the testis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCluggage WG. My approach to and thoughts on typing of ovarian carcinomas. J Clin Pathol. 2008;61:152–63.

    PubMed  CAS  Google Scholar 

  2. Shih IM, Kurman RJ. Ovarian tumorigenesis. A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164:1511–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Gilks CB. Subclassification of ovarian surface epithelial tumors based on correlation of histologic and molecular pathologic data. Int J Gynecol Pathol. 2004;23:200–5.

    PubMed  Google Scholar 

  4. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27:161–74.

    PubMed  Google Scholar 

  5. McCluggage WG. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011;43:420–32.

    PubMed  Google Scholar 

  6. Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012;460:237–49.

    PubMed  Google Scholar 

  7. Naik JD, Seligmann J, Perren TJ. Mucinous tumours of the ovary. J Clin Pathol. 2012;65:580–4.

    PubMed  CAS  Google Scholar 

  8. Nomura H, Tsuda H, Susumu N, et al. Lymph node metastasis in grossly apparent stages I and II epithelial ovarian cancer. Int J Gynecol Cancer. 2010;20:341–5.

    PubMed  Google Scholar 

  9. Tavassoli FA, Devilee P. World Health Organisation classification of tumours. Pathology and genetics. Tumours of the breast and female genital organs. Lyon: IARC Press; 2003.

    Google Scholar 

  10. Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004;23:41–4.

    PubMed  Google Scholar 

  11. Köbel M, Kalloger SE, Huntsman DG, et al. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol. 2010;29:203–11.

    PubMed  Google Scholar 

  12. Koonings PP, Campbell K, Mishell DR, et al. Relative frequency of primary ovarian neoplasms: a ten year review. Obstet Gynecol. 1989;74:921–6.

    PubMed  CAS  Google Scholar 

  13. Bertelsen K, Holund B, Andersen E. Reproducibility and prognostic value of histologic type and grade in early epithelial ovarian cancer. Int J Gynecol Cancer. 1993;3:72–9.

    PubMed  Google Scholar 

  14. Baak JP, Langley FA, Talerman A, Delemarre JF. Interpathologist and intrapathologist disagreement in ovarian tumor grading and typing. Anal Quant Cytol Histol. 1986;8:354–7.

    PubMed  CAS  Google Scholar 

  15. Cramer SF, Roth LM, Ulbright TM, et al. Evaluation of the reproducibility of the World Health Organization classification of common ovarian cancers. With emphasis on methodology. Arch Pathol Lab Med. 1987;111:819–29.

    PubMed  CAS  Google Scholar 

  16. Lund B, Thomsen HK, Olsen J. Reproducibility of histopathological evaluation in epithelial ovarian carcinoma. Clinical implications. APMIS. 1991;99:353–8.

    PubMed  CAS  Google Scholar 

  17. Sakamoto A, Sasaki H, Furusato M, et al. Observer disagreement in histological classification of ovarian tumors in Japan. Gynecol Oncol. 1996;54:54–8.

    Google Scholar 

  18. McCluggage WG, Lyness RW, Atkinson RJ, et al. Morphological effects of chemotherapy on ovarian carcinoma. J Clin Pathol. 2002;55:27–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Miller K, Price JH, Dobbs SP, et al. An immunohistochemical and morphological analysis of post-chemotherapy ovarian carcinoma. J Clin Pathol. 2008;61:652–7.

    PubMed  CAS  Google Scholar 

  20. National Institute of Clinical Excellence. Ovarian cancer: the recognition and initial management of ovarian cancer. Cardiff/Wales: National Institute of Clinical Excellence; 2011.

    Google Scholar 

  21. Silverberg SG. Histopathologic grading of ovarian carcinoma: a review and proposal. Int J Gynecol Pathol. 2000;19:7–15.

    PubMed  CAS  Google Scholar 

  22. Shimizu Y, Kamoi S, Amada S, et al. Toward the development of a universal grading system for ovarian epithelial carcinoma. I. Prognostic significance of histopathologic features- problems involved in the architectural grading system. Gynecol Oncol. 1998;70:2–12.

    PubMed  CAS  Google Scholar 

  23. Shimizu Y, Kamoi S, Amada S, et al. Toward the development of a universal grading system for ovarian epithelial carcinoma: testing of a proponed system in a series of 461 patients with uniform treatment and follow-up. Cancer. 1998;82:893–901.

    PubMed  CAS  Google Scholar 

  24. Wilkinson N, McCluggage WG. Datasets for the histopathological reporting of neoplasms of the ovaries and fallopian tubes and primary carcinomas of the peritoneum. July: Royal College of Pathologists; 2008.

    Google Scholar 

  25. Russell HE, McCluggage WG. A multistep model for ovarian tumorigenesis: the value of mutation analysis in the KRAS and BRAF genes. J Pathol. 2004;203:617–9.

    PubMed  CAS  Google Scholar 

  26. Singer G, Kurman RJ, Chang HW, et al. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol. 2002;160:1223–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Singer G, Shih IM, Truskinovsky A, et al. Mutational analysis of K-ras segregates ovarian serous carcinomas into two types: invasive MPSC (low-grade tumor) and conventional serous carcinoma. Int J Gynecol Pathol. 2003;22:37–41.

    PubMed  Google Scholar 

  28. Singer G, Stohr R, Cope L, et al. Patterns of p53 mutations separate ovarian serous borderline tumors and low and high grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005;29:218–24.

    PubMed  Google Scholar 

  29. Ho C-L, Kurman RJ, Dehari R, et al. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 2004;64:6915–8.

    PubMed  CAS  Google Scholar 

  30. Sieben NLG, Macropoulos P, Roemen GMJM, et al. In ovarian neoplasms, BRAF, but not KRAS, mutation are restricted to low-grade serous tumours. J Pathol. 2004;202:336–40.

    PubMed  CAS  Google Scholar 

  31. Vang R, Shih IM, Kurman RJ. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 2009;16:267–82.

    PubMed  PubMed Central  Google Scholar 

  32. McCluggage WG. The pathology of and controversial aspects of ovarian borderline tumours. Curr Opin Oncol. 2010;22:462–72.

    PubMed  Google Scholar 

  33. Seidman JD, Kurman RJ. Subclassification of serous borderline tumors of the ovary into benign and malignant types. A clinicopathologic study of 65 advanced stage cases. Am J Surg Pathol. 1996;20:1331–45.

    PubMed  CAS  Google Scholar 

  34. Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31:161–9.

    PubMed  Google Scholar 

  35. Lee Y, Medeiros F, Mindelberger D, et al. Advances in the recognition of tubal intraepithelial carcinoma: applications to cancer screening and the pathogenesis of ovarian cancer. Adv Anat Pathol. 2006;13:1–7.

    PubMed  Google Scholar 

  36. Medeiros F, Muto MG, Lee Y, et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol. 2007;30:230–6.

    Google Scholar 

  37. Przybycin CG, Kurman RJ, Ronnett BM, et al. Are all pelvic (nonuterine) serous carcinomas of tubal origin? Am J Surg Pathol. 2010;34:1407–16.

    PubMed  Google Scholar 

  38. Lee Y, Miron A, Drapkin R, et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211:26–35.

    PubMed  CAS  Google Scholar 

  39. Herrington CS, McCluggage WG. The emerging role of the distal fallopian tube and p53 in pelvic serous carcinogenesis. J Pathol. 2010;220:5–6.

    PubMed  CAS  Google Scholar 

  40. Malpica A, Deavers MT, Lu K, et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol. 2004;28:496–504.

    PubMed  Google Scholar 

  41. Malpica A, Deavers MT, Tornos C, et al. Interobserver and intraobserver variability of a two-tier system for grading ovarian serous carcinoma. Am J Surg Pathol. 2007;31:1168–74.

    PubMed  Google Scholar 

  42. Dehari R, Kurman RJ, Logani S, et al. The development of high-grade serous carcinoma from atypical proliferative (borderline) serous tumors and low-grade micropapillary serous carcinoma: a morphologic and molecular genetic analysis. Am J Surg Pathol. 2007;31:1007–12.

    PubMed  Google Scholar 

  43. Boyd C, McCluggage WG. Low-grade ovarian serous neoplasms (low-grade serous carcinoma and serous borderline tumor) associated with high-grade serous carcinoma or undifferentiated carcinoma: report of a series of cases of an unusual phenomenon. Am J Surg Pathol. 2012;36:368–75.

    PubMed  Google Scholar 

  44. Garg K, Park KJ, Soslow RA. Low-grade serous neoplasms of the ovary with transformation to high-grade carcinomas: a report of 3 cases. Int J Gynecol Pathol. 2012;31(5):423–8.

    PubMed  Google Scholar 

  45. Kobel M, Reuss A, Du Bois A, et al. The biological and clinical value of p53 expression in pelvic high-grade serous carcinomas. J Pathol. 2010;222:191–8.

    PubMed  CAS  Google Scholar 

  46. Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinomas of the ovary. J Pathol. 2010;221:49–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. McCluggage WG, Soslow RA, Gilks CB. Patterns of p53 immunoreactivity in endometrial carcinomas: “all or nothing” staining is of importance. Histopathology. 2011;59:786–8.

    PubMed  Google Scholar 

  48. Yemelyanova A, Vang R, Kshirsagar M, et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011;24:1248–53.

    PubMed  CAS  Google Scholar 

  49. Schrader KA, Hurlburt J, Kalloger SE, et al. Germline BRCA1 and BRCA2 mutations in ovarian cancer: utility of a histology-based referral strategy. Obstet Gynecol. 2012;120:235–40.

    PubMed  CAS  Google Scholar 

  50. Press JZ, De Luca A, Boyd N, et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer. 2008;8:17.

    PubMed  PubMed Central  Google Scholar 

  51. Gershenson DM, Sun CC, Lu KH, et al. Clinical behavior of stage II-IV low-grade serous carcinoma of the ovary. Obstet Gynecol. 2006;108:361–8.

    PubMed  Google Scholar 

  52. Folkins A, Jarboe E, Saleemuddin A, et al. A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. Gynecol Oncol. 2008;109:168–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Visvanathan K, Vang R, Shaw P, et al. Diagnosis of serous tubal intraepithelial carcinoma based on morphologic and immunohistochemical features: a reproducibility study. Am J Surg Pathol. 2011;35:1766–75.

    PubMed  Google Scholar 

  54. Kurman RJ, Vang R, Junge J, Hannibal CG, Kjaer SK, Shih IM. Papillary tubal hyperplasia: the putative precursor of ovarian atypical proliferative (borderline) serous tumors, noninvasive implants, and endosalpingiosis. Am J Surg Pathol. 2011;35:1605–14.

    PubMed  PubMed Central  Google Scholar 

  55. Laury AR, Ning G, Quick CM, et al. Fallopian tube correlates of ovarian serous borderline tumors. Am J Surg Pathol. 2011;35:1759–65.

    PubMed  PubMed Central  Google Scholar 

  56. Leen SL, Singh N. Pathology of primary and metastatic mucinous ovarian neoplasms. J Clin Pathol. 2012;65:591–5.

    PubMed  Google Scholar 

  57. McCluggage WG. Immunohistochemistry in the distinction between primary and metastatic ovarian mucinous neoplasms. J Clin Pathol. 2012;65:596–600.

    PubMed  Google Scholar 

  58. Hart WR. Mucinous tumors of the ovary: a review. Int J Gynecol Pathol. 2005;24:4–25.

    PubMed  Google Scholar 

  59. Lerwill MF, Young RH. Mucinous tumours of the ovary. Diagn Histopathol. 2008;14:366–87.

    Google Scholar 

  60. Ronnett BM, Kajdacsy-Balla A, Gilks CB, et al. Mucinous borderline ovarian tumors: points of general agreement and persistent controversies regarding nomenculature, diagnostic criteria, and behavior. Hum Pathol. 2004;35:959–60.

    Google Scholar 

  61. Lee KR, Young RH. The distinction between primary and secondary mucinous carcinomas of the ovary: gross and histologic findings in 50 cases. Am J Surg Pathol. 2003;27:281–92.

    PubMed  Google Scholar 

  62. Seidman JD, Kurman RJ, Ronnett BM. Primary and metastatic mucinous adenocarcinomas in the ovary: incidence in routine practice with a new approach to improve intraoperative diagnosis. Am J Surg Pathol. 2003;27:985–93.

    PubMed  Google Scholar 

  63. Lewis MR, Deavers MT, Silva EG, Malpica A. Ovarian involvement by metastatic colorectal adenocarcinoma: still a diagnostic challenge. Am J Surg Pathol. 2006;30:177–84.

    PubMed  Google Scholar 

  64. McCluggage WG, Wilkinson N. Metastatic neoplasms involving the ovary: a review with an emphasis on morphological and immunohistochemical features. Histopathology. 2005;47:231–47.

    PubMed  CAS  Google Scholar 

  65. Berezowski K, Stasny JF, Kornstein MJ. Cytokeratins 7 and 20 and carcinoembryonic antigen in ovarian and colonic carcinoma. Mod Pathol. 1996;9:1040–4.

    Google Scholar 

  66. Lagendijk JH, Mullink H, van Diest PJ, Meijer GA, Meijer CJ. Immunohistochemical differentiation between primary adenocarcinomas of the ovary and ovarian metastases of colon and breast origin. Comparison between a statistical and intuitive approach. J Clin Pathol. 1999;52:283–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Park SO, Kim HS, Hong EK, et al. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol. 2002;33:1078–85.

    PubMed  CAS  Google Scholar 

  68. Vang R, Gown AM, Wu LS, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol. 2006;19:1421–8.

    PubMed  CAS  Google Scholar 

  69. Vang R, Gown AM, Barry TS, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol. 2006;30:1130–9.

    PubMed  Google Scholar 

  70. Fragetta F, Pelosi G, Cafici A, et al. CDX2 immunoreactivity in primary and metastatic ovarian mucinous tumours. Virchows Arch. 2003;443:782–6.

    Google Scholar 

  71. Logani S, Oliva E, Arnell PM, et al. Use of novel immunohistochemical markers expressed in colonic adenocarcinoma to distinguish primary ovarian tumors from metastatic colorectal carcinoma. Mod Pathol. 2005;18:19–25.

    PubMed  CAS  Google Scholar 

  72. Raspollini MR, Amunni G, Villanucci A, et al. Utility of CDX-2 in distinguishing between primary and secondary (intestinal) mucinous ovarian carcinoma: an immunohistochemical comparison of 43 cases. Appl Immunohistochem Mol Morphol. 2004;12:127–31.

    PubMed  Google Scholar 

  73. Ronnett BM, Zahn CM, Kurman RJ, et al. Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis: a clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis and relationship to “pseudomyxoma peritonei”. Am J Surg Pathol. 1995;19:1390–408.

    PubMed  CAS  Google Scholar 

  74. Guerrieri C, Franlund B, Boeryd B. Expression of cytokeratin 7 in simultaneous mucinous tumors of the ovary and appendix. Mod Pathol. 1995;8:573–6.

    PubMed  CAS  Google Scholar 

  75. Ronnett BM, Shmookler BM, Diener-West M, et al. Immunohistochemical evidence supporting the appendiceal origin of pseudomyxoma peritonei in women. Int J Gynecol Pathol. 1997;16:1–9.

    PubMed  CAS  Google Scholar 

  76. Vang R, Gown AM, Zhao C, et al. Ovarian mucinous tumors associated with mature cystic teratomas: morphologic and immunohistochemical analysis identifies a subset of potential teratomatous origin that shares features of lower gastrointestinal tract mucinous tumors more commonly encountered as secondary tumors in the ovary. Am J Surg Pathol. 2007;31:854–69.

    PubMed  Google Scholar 

  77. Tenti P, Aguzzi A, Riva C, et al. Ovarian mucinous tumors frequently express markers of gastric, intestinal and pancreaticobiliary epithelial cells. Cancer. 1992;69:2131–42.

    PubMed  CAS  Google Scholar 

  78. Rodriguez IM, Irving JA, Prat J. Endocervical-like mucinous borderline tumors of the ovary: a clinicopathologic analysis of 31 cases. Am J Surg Pathol. 2004;28:1311–8.

    PubMed  Google Scholar 

  79. Lee KR, Nucci MR. Ovarian mucinous and mixed epithelial carcinomas of mullerian (endocervical-like) type: a clinicopathologic analysis of four cases of an uncommon variant associated with endometriosis. Int J Gynecol Pathol. 2003;22:42–51.

    PubMed  Google Scholar 

  80. Kelly P, Archbold P, Price JH, Cardwell C, McCluggage WG. Serum CA19.9 levels are commonly elevated in primary ovarian mucinous tumours but cannot be used to predict the histological subtype. J Clin Pathol. 2010;63:169–73.

    PubMed  CAS  Google Scholar 

  81. Cantrecasas M, Villaneuva A, Matias-Guiu X, Prat J. K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer. 1997;70:1581–6.

    Google Scholar 

  82. Gemignani ML, Schlaerth AC, Bogomolnly F, et al. Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. Gynecol Oncol. 2003;90:378–81.

    PubMed  CAS  Google Scholar 

  83. Kim KR, Choi J, Hwang JE, Baik YA, Shim JY, Kim YM, Robboy SJ. Endocervical-like (Müllerian) mucinous borderline tumours of the ovary are frequently associated with the KRAS mutation. Histopathology. 2010;57:587–96.

    PubMed  Google Scholar 

  84. Wu CH, Mao TL, Vang R, et al. Endocervical-type mucinous borderline tumors are related to endometrioid tumors based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol. 2012;31:297–303.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Kurman RJ, Shih IM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer- shifting the paradigm. Hum Pathol. 2011;42:918–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Seidman JD, Yemelyanova A, Zaino RJ, Kurman RJ. The fallopian tube-peritoneal junction: a potential site of carcinogenesis. Int J Gynecol Pathol. 2011;30:4–11.

    PubMed  Google Scholar 

  87. Rabban JT, Karnezis AN, Zaloudek CJ. Junctional epithelial zones of the fallopian tube: cancer hotspots? Int J Gynecol Pathol. 2011;30:1–3.

    PubMed  Google Scholar 

  88. Seidman JD, Khedmati F. Exploring the histogenesis of ovarian mucinous and transitional cell (Brenner) neoplasms and their relationship with Walthard cell nests: a study of 120 tumors. Arch Pathol Lab Med. 2008;132:1753–60.

    PubMed  Google Scholar 

  89. Miller K, Millar J, McCluggage WG. Emergence of CA125 immunoreactivity in recurrent or metastatic primary ovarian mucinous neoplasms of the intestinal type. Am J Surg Pathol. 2011;35:1331–6.

    PubMed  Google Scholar 

  90. Provenza C, Young RH, Prat J. Anaplastic carcinoma in mucinous ovarian tumors: a clinicopathologic study of 34 cases emphasizing the crucial impact of stage on prognosis, their histologic spectrum, and overlap with sarcomalike mural nodules. Am J Surg Pathol. 2008;32:383–9.

    PubMed  Google Scholar 

  91. Stern RC, Dash R, Bentley RC, et al. Malignancy in endometriosis: frequency and comparison of ovarian and extraovarian types. Int J Gynecol Pathol. 2001;20:133–9.

    PubMed  CAS  Google Scholar 

  92. Bell KA, Kurman RJ. A clinicopathologic analysis of atypical proliferative (borderline) tumors and well-differentiated endometrioid adenocarcinomas of the ovary. Am J Surg Pathol. 2000;24:1465–79.

    PubMed  CAS  Google Scholar 

  93. Zaino RJ. Synchronous carcinomas of the uterine corpus and ovary. Gynecol Oncol. 1984;19:329–35.

    PubMed  CAS  Google Scholar 

  94. Catasus L, Bussaglia E, Rodriguez I, et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol. 2004;35:1360–8.

    PubMed  CAS  Google Scholar 

  95. Brachtel EF, Sánchez-Estevez C, Moreno-Bueno G, Prat J, Palacios J, Oliva E. Distinct molecular alterations in complex endometrial hyperplasia (CEH) with and without immature squamous metaplasia (squamous morules). Am J Surg Pathol. 2009;29:1322–9.

    Google Scholar 

  96. Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Guan B, Mao TL, Panuganti PK, et al. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 2011;35:625–32.

    PubMed  PubMed Central  Google Scholar 

  98. DeLair D, Oliva E, Koble M, et al. Morphologic spectrum of immunohistochemically characterized clear cell carcinoma of the ovary: a study of 155 cases. Am J Surg Pathol. 2011;35:36–44.

    PubMed  Google Scholar 

  99. Tan DS, Kaye S. Ovarian clear cell carcinoma: a continuing enigma. J Clin Pathol. 2007;60:355–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Jones S, Wang TL, Shih IM, et al. Frequent mutations of chromatin remodelling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Maeda D, Mao TL, Fukuyama M, et al. Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci. 2010;11:5120–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Eichhorn JH, Young RH. Transitional cell carcinoma of the ovary: a morphologic study with emphasis on differential diagnosis. Am J Surg Pathol. 2004;28:453–63.

    PubMed  Google Scholar 

  103. Logani S, Oliva E, Amin MB, et al. Immunoprofile of ovarian tumors with putative transitional cell (urothelial) differentiation using novel urothelial markers: histogenetic and diagnostic implications. Am J Surg Pathol. 2003;27:1434–41.

    PubMed  Google Scholar 

  104. Silva EG, Deavers MT, Malpica A. Undifferentiated carcinoma of the endometrium: a review. Pathology. 2007;39:134–8.

    PubMed  Google Scholar 

  105. Kobel M, Kalloger SE, Baker PM, et al. Diagnosis of ovarian carcinoma cell type is highly reproducible: a transcanadian study. Am J Surg Pathol. 2010;34:984–93.

    PubMed  Google Scholar 

  106. McCluggage WG. WT1 is of value in ascertaining the site of origin of serous carcinomas within the female genital tract. Int J Gynecol Pathol. 2004;23:97–9.

    PubMed  Google Scholar 

  107. Shimizu M, Toki T, Takagi Y, Konishi I, Fujii S. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol. 2000;19:158–63.

    PubMed  CAS  Google Scholar 

  108. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44:109–15.

    PubMed  CAS  Google Scholar 

  109. Goldstein NS, Uzieblo A. WT-1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol. 2002;117:541–5.

    PubMed  Google Scholar 

  110. Köbel M, Kalloger SE, Carrick J, et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am J Surg Pathol. 2009;33:14–21.

    PubMed  Google Scholar 

  111. Yamamoto S, Tsuda H, Aida S, Shimazaki H, Tamai S, Matsubara O. Immunohistochemical detection of hepatocyte nuclear factor 1beta in ovarian and endometrial clear-cell adenocarcinomas and nonneoplastic endometrium. Hum Pathol. 2007;38:1074–80.

    PubMed  CAS  Google Scholar 

  112. McCluggage WG. Malignant biphasic uterine tumours: carcinosarcomas or metaplastic carcinomas? J Clin Pathol. 2002;55:321–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. McCluggage WG. Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int J Gynecol Cancer. 2002;12:687–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Glenn McCluggage FRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

McCluggage, W.G. (2014). Overview of Epithelial Ovarian Carcinoma (EOC): Pathogenesis and General Considerations. In: Wilkinson, N. (eds) Pathology of the Ovary, Fallopian Tube and Peritoneum. Essentials of Diagnostic Gynecological Pathology. Springer, London. https://doi.org/10.1007/978-1-4471-2942-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2942-4_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2941-7

  • Online ISBN: 978-1-4471-2942-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics