Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 181))

  • 2092 Accesses

Abstract

Chapter 6 introduces the fundamental theory of Melnikov function method. Basic definitions and fundamental lemmas are presented. A main theory on the number of limit cycles is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binyamini, B., Novikov, D., Yakovenko, S.: On the number of zeros of Abelian integrals: a constructive solution of the infinitesimal Hilbert 16th problem. arXiv:0808.2952v3, 1–59 (2009)

  2. Caubergh, M., Roussarie, R.: Relations between Abelian integrals and limit cycles. In: Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, pp. 1–32. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  3. Christopher, C.J., Li, C.: Limit cycles of differential equations. In: Advanced Courses in Mathematical CRM Barcelona. Birkhäuser, Basel (2007)

    Google Scholar 

  4. Dumortier, F., Roussarie, R.: Abelian integrals and limit cycles. J. Differ. Equ. 227, 116–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Françoise, J.P.: Successive derivatives of the first return map, application to the study of quadratic vector fields. Ergod. Theory Dyn. Syst. 16(1), 87–96 (1996)

    Article  MATH  Google Scholar 

  6. Han, M.: Bifurcations of invariant tori and subharmonic solutions for periodic perturbed systems. Sci. China Ser. A 37(11), 1325–1336 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Ilyashenko, Yu.: Centennial history of Hilbert’s 16th problem. Bull., New Ser., Am. Math. Soc. 39(3), 301–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos 13, 47–106 (2003)

    Article  MATH  Google Scholar 

  9. Li, J., Huang, Q.: Bifurcations of limit cycles forming compound eyes in the cubic system. Chin. Ann. Math., Ser. B 8, 391–403 (1987)

    MATH  Google Scholar 

  10. Li, J., Li, C.F.: Planar cubic Hamiltonian systems and distribution of limit cycles of (E 3). Acta Math. Sin. 28, 509–521 (1985)

    MATH  Google Scholar 

  11. Li, J., Lin, Y.: Global bifurcations in a perturbed cubic system with Z 2-symmetry. Acta Math. Appl. Sin. 8(2), 131–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J., Liu, Z.: Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system. Publ. Math. 35, 487–506 (1991)

    MATH  Google Scholar 

  13. Li, J., Liu, Z.: Bifurcation set and compound eyes in a perturbed cubic Hamiltonian system, in ordinary and delay differential equations. In: Pitman Research Notes in Mathematics Ser., vol. 272, pp. 116–128. Longman, Harlow (1991)

    Google Scholar 

  14. Li, J., Zhang, M.Q.: Bifurcations of limit cycles in a Z 8-equivariant planar vector field of degree 7. J. Differ. Equ. Dyn. Syst. 16(4), 1123–1139 (2004)

    Article  MATH  Google Scholar 

  15. Li, J., Zhang, M., Li, S.: Bifurcations of limit cycles in a Z 2-equivariant planar polynomial vector field of degree 7. Int. J. Bifurc. Chaos 16(4), 925–943 (2006)

    Article  MATH  Google Scholar 

  16. Luca, S., Dumortier, F., Caubergh, M., Roussarie, R.: Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete Contin. Dyn. Syst. 25(4), 1081–1108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pontryagin, L.S.: On dynamical systems close to Hamiltonian systems. J. Exp. Theor. Phys. 4, 234–238 (1934)

    Google Scholar 

  18. Roussarie, R.: On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields. Bol. Soc. Bras. Mat. 17(2), 57–101 (1986)

    Article  MathSciNet  Google Scholar 

  19. Varchenko, A., Khovansky, A.: Asymptotics of integrals over vanishing cycles and the Newton polyhedron. Dokl. Akad. Nauk USSR 283(3), 521–525 (1985); Sov. Math. Dokl. (Eng. Transl. DAN), 32, 122–127 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoan Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Han, M., Yu, P. (2012). Fundamental Theory of the Melnikov Function Method. In: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles. Applied Mathematical Sciences, vol 181. Springer, London. https://doi.org/10.1007/978-1-4471-2918-9_6

Download citation

Publish with us

Policies and ethics