Skip to main content

Design, Life-Time and Residual Life

  • Chapter
  • First Online:
Materials for Nuclear Plants
  • 3462 Accesses

Abstract

Materials investigations and materials data are used for the design of nuclear plants, for assessment of possible damage and for the definition of plant life management and plant life extension programmes. This requires the transfer of materials data into design rules and damage assessment procedures. A very important task concerns the conversion of laboratory data which are usually the result of uniaxial tests into multiaxial loading conditions in a machine. Design and safety assessments are done on the basis of design codes describing design procedures and providing also the necessary design data. During operation the design life is consumed and damage (creep, fatigue, corrosion, radiation etc.) develops which needs concepts for damage monitoring (including non-destructive evaluation). Based on the condition of the plant concepts for plant life management and (if required) plant life extension must be developed. The whole chain from multiaxiality to plant life extension is briefly outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tipping PG (ed) (2010) Understanding and mitigating ageing in nuclear power plants. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  2. Gross D, Hauger W, Schröder J, Wall WA, Bonet J (2011) Engineering mechanics II mechanics of materials. Springer, Berlin

    Google Scholar 

  3. Wikipedia Mechanics http://en.wikipedia.org/wiki/Stress_(mechanics). Accessed 2 Nov 2011

  4. Wikipedia Von Mises http://en.wikipedia.org/wiki/Von_Mises_yield_criterion. Accessed 13 Oct 2011

  5. Michaelsen C, Hoffelner W, Krautzig J (1989) The role of state of stress for the determination of life-time of turbine components. 3rd international conference on biaxial/multiaxial fatigue, Stuttgart, Conference Proceedings, p 20.1

    Google Scholar 

  6. Othman AM, Hayhurst DR, Dyson BF (1993) Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations. In: Proceedings of mathematical and physical sciences 441(1912):343–358

    Google Scholar 

  7. Kraus H (1980) Creep analysis. Wiley-Interscience, New York

    Google Scholar 

  8. Hayhurst DR, Leckie FA (1973) The effect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar. J Mech Phys Solid 21:431–446

    Google Scholar 

  9. Hayhurst DR (1973) Stress redistribution and rupture due to creep in a uniformly stretched thin plate containing a circular hole. J Appl Mech 40:244–250

    Google Scholar 

  10. Hayhurst DR (1973) The prediction of creep-rupture times of rotating disks using biaxial relationships. J Appl Mech 40:915–920

    Google Scholar 

  11. Neuber H (2001) Kerbspannungslehre, 4th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Melton KN, Hoffelner W, Bertilsson JE (1983) Creep-fatigue life-time predictions of notched specimens and components. In: Congress proceedings of international conference advances in life prediction methods, Albany, New York, ASME

    Google Scholar 

  13. Smith RN, Watson P, Topper TH (1970) A stress-strain parameter for the fatigue of metals. J Mater 5(4):767–778

    Google Scholar 

  14. Hoffelner W (1984) On the effect of notches on the high temperature low-cycle-fatigue behaviour of high temperatures alloys. In: Congress proceedings on spring meeting of the French metals society, Paris 22/23 Mai

    Google Scholar 

  15. Terao D (2010) MDEPs approach to achieve global harmonization of nuclear design codes and standards. ANSI NIST nuclear energy standards coordination and standards collaborative. http://publicaa.ansi.org/sites/apdl/Documents/Meetings%20and%20Events/2009%20NESCC/NESCC%20Meeting%20-%20May%2026,%202010/NESCC%2010-019%20-%20MDEP’s%20Approach%20to%20Achieve%20Global%20Harmonization%20of%20Nuclear%20Design%20Codes%20and%20Standards.pdf. Accessed 15 Oct 2011

  16. ASME Boiler and Pressure Vessel Code (2011) Section III: rules for construction of nuclear power plant components

    Google Scholar 

  17. Sims R (2010) Roadmap to develop high temperature gas cooled reactors (HTGRS). ASME Standards Technology LLC

    Google Scholar 

  18. Kernterchnische Anlagen (KTA-rules) (1993) Metallische HTR komponenten. KTA Doc Nrs 3221.x

    Google Scholar 

  19. Pressure Vessel Stresses NAFSEM http://www.nafems.org/resources/knowledgebase/012/. Accessed 3 Nov 2011

  20. Bree J (1967) Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high heat-fluxes with application to fast-nuclear-reactor fuel elements. J Strain Analysis 2:226–238

    Google Scholar 

  21. Riou B (2008) Improvement of ASME section III-NH for grade 91 negligible creep and creep-fatigue. ASME STP-NU-013

    Google Scholar 

  22. Hoffelner W (2009) Creep-fatigue life determination of grade 91 steel using a strain-range separation method. In: Proceedings of the 2009 ASME pressure vessel and piping conference PVP 2009, July 26–30, 2009, Prague, CZ, Paper PVP2009-77705

    Google Scholar 

  23. NIMS metallic materials (2011) Low alloy steels 1 Cr 0.5 Mo http://metallicmaterials.nims.go.jp/metal/view/resultMetalList.html?id=48205401_sc0. Accessed 3 Nov 2011

  24. DIN EN 10222-2 (2000) 13CrMo4-51Cr-0.5Mo

    Google Scholar 

  25. NRIM-Creep Data Sheets No. 14A-1982, 15A-1982, 45-1997 and 6B-2000 (2011) National Research Institute for Metals Tokyo Japan. http://smds.nims.go.jp/MSDS/en/sheet/Creep.html. Accessed 6 Nov 2011

  26. Rieth M (2007) A comprising steady-state creep model for the austenitic AISI 316 L(N) steel. J Nucl Mater 367–370:915–919

    Article  Google Scholar 

  27. NIMS Database (PW required) https://mits.nims.go.jp/db_top_eng.htm

  28. ODIN data information network (PW required) https://odin.jrc.ec.europa.eu/alcor/Main.jsp. Accessed 6 Nov 2011

  29. Ren W (2010) Gen IV materials handbook functionalities and operation (1B)—handbook version 1.1. ORNL/TM-2009/285_1B

    Google Scholar 

  30. IAEA Nuklear Energy Knowledge Resources http://www.iaea.org/inisnkm/nkm/aws/index.html. Accessed 5 Nov 2011

  31. Marriott DL, Westerkamp EJ (2008) In: Proceedings of PVP2008, ASME pressure vessels and piping division conference, 27–31 July 2008, Chicago, Illinois, USA, Paper Nr.: PVP2008-61585

    Google Scholar 

  32. Hoffelner W (2011) Materials databases and knowledge management for advanced nuclear technologies. J Press Vessel Technol 133(1):014505 1–4 doi:10.1115/1.4002262

  33. Koo GH, Lee JH (2008) Development of an ASME-NH program for nuclear component design at elevated temperatures. Int J Press Vessels Pip 85(6):385–393

    Google Scholar 

  34. IAEA (2001) Application of non-destructive testing and in-service inspection to research reactors. Results of a coordinated research project. IAEA-TECDOC-1263

    Google Scholar 

  35. Wüstenberg H, Erhard A, Boehm R (2011) Limiting factors for crack detection by ultrasonic investigation. BAM, Berlin, Germany http://www.ndt.net/article/0198/wues_lim/wues_lim.htm. Accessed 12 Oct 2011

  36. Non-destructive Testing (2011) http://www.ndt-ed.org/AboutNDT/aboutndt.htm. Accessed 3 Nov 2011

  37. Selby G (2008) Flaw characterization techniques for plant components. Nuclear fuels and structural materials for the next generation nuclear reactors embedded topical meeting ANS annual meeting, San Diego

    Google Scholar 

  38. Ultrasonic testing of materials http://www.ndt.net/article/v05n09/berke/berke1.htm. Accessed 4 Nov 2011

  39. Ultrasound phased array (introduction) http://www.ndt.net/article/v07n05/rdtech/rdtech.htm. Accessed 4 Nov 2011

  40. Coleman CE, Cheadle BA, Causey AR, Chow PCK, Davies PH, McManus MD, Rodgers DK, Sagat S, van Drunen G (1989) Evaluation of zircaloy-2 pressure tubes. In: van Swam LFP, Eucken CM (eds) Zirconium in the nuclear industry. ASTM STP 1023 ASTM, pp 35–49

    Google Scholar 

  41. Doig P, Gasper BC (2005) An overview of plant structural integrity assessment. In: Stanley P (ed) Structural integrity assessment. Taylor Francis, pp 163–183

    Google Scholar 

  42. Marder AR (1989) ASM handbook vol 17, nondestructive evaluation and quality control. ASM International, pp 52–56

    Google Scholar 

  43. Acoustic emission testing (displays) http://www.ndt-ed.org/EducationResources/CommunityCollege/Other%20Methods/AE/AE_DateDisplay.htm. Accsessed 4 Nov 2011

  44. Foulds JR, Viswanathan R (2004) Nondisruptive material sampling and mechanical testing. J Nondestr Eval 15(3–4):151–162

    Google Scholar 

  45. Molak RM, Kartal M, Pakiela Z, Manaj W, Turski M, Hiller S, Gungor S, Edwards L, Kurzydlowski KJ (2007) Use of micro tensile test samples in determining the remnant life of pressure vessel steels. Appl Mech Mater 7–8:187–194

    Article  Google Scholar 

  46. Drew M, Humphries S, Thorogood K, Barnett N (2006) Remaining life assessment of carbon steel boiler headers by repeated creep testing. Int J Press Vessels Pip 83:343–348

    Article  Google Scholar 

  47. Foulds JR, Wu M, Srivastav S, Jewett CW, Arlia NG, Williams JF (2006) Small punch testing for irradiation embrittlement—experimental requirements and vision enhancement system. EPRI TR-106638 research project 8046-03, EPRI

    Google Scholar 

  48. Karasawa H, Izumi M, Suzuki T, Nagai S, Tamura M, Fujimori S (2006) Development of under-sodium three dimensional visual inspection technique using matrix arrayed ultrasonic transducer. J Nucl Sci Technol 37(9):769–779

    Article  Google Scholar 

  49. Wallin K (1993) Irradiation damage effects on the fracture toughness transition curve shape for reactor pressure vessel steels. Int J Pres Vess 55:61–79

    Article  Google Scholar 

  50. American Society for Testing and Materials ASTM E 1921-05 (2007) Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range. Annual book of ASTM standards ASTM international, West Conshohocken, pp 1203–1222

    Google Scholar 

  51. Wallin K (1991) Fracture toughness transition curve shape for ferritic structural steels. Joint FEFG/ICF international conference on fracture of engineering materials and structures, Singapore

    Google Scholar 

  52. IAEA (2009) Master curve approach to monitor fracture toughness of reactor pressure vessels in nuclear power plants. IAEA-TECDOC-1631 IAEA, Vienna

    Google Scholar 

  53. Odette GR, Lucas GE (1996) An integrated approach to evaluating the fracture toughness of irradiated nuclear reactor pressure vessels. J Nondestr Eval 15:3–4

    Article  Google Scholar 

  54. IAEA (2001) Reference manual on the IAEA JRQ correlation monitor steel for irradiation damage studies. IAEA-TECDOC-1230

    Google Scholar 

  55. Niffenegger M, Leber HJ (2009) Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient. J Nucl Mater 389(1):62–67

    Google Scholar 

  56. Miller MK, Sokolov MA, Nanstad RK, Russel KF (2006) J Nucl Mater 351:216–222

    Google Scholar 

  57. Cammelli S, Degueldre C, Kuri G, Bertsch J (2008) Study of a neutron irradiated reactor pressure vessel steel by X-ray absorption spectroscopy. Nucl Instrum Meth Phys Res B 266:4775–4781

    Article  Google Scholar 

  58. Wikipedia Defence in Depth http://en.wikipedia.org/wiki/Defence_in_depth. Accessed 3 Nov 2011

  59. JRC EUR 23232 EN (2008) A plant life management model including optimized MS-I programme-safety and economics issues. JRC EUR-report, Jan 2008

    Google Scholar 

  60. Bakirov M (2010) Impact of operational loads and creep, fatigue corrosion interactions on nuclear power plant saystems, structures and components (SSC). In: Tipping PG (ed) Understanding and mitigating ageing in nuclear power plants. Woodhead, pp 146–188

    Google Scholar 

  61. Kasahara homepage http://www.n.t.u-tokyo.ac.jp/kasahara/Homepage/Technology.html. Accessed 13 Oct 2011

  62. Hoffelner W (2010) Design related aspects in advanced nuclear fission plants. J Nucl Mater 409(3):112–116

    Google Scholar 

  63. Hoffelner W (2010) Damage assessment in structural metallic materials for advanced nuclear plants. J Mater Sci 45(9):2247–2257. doi:10.1007/s10853-010-4236-7

    Article  Google Scholar 

  64. IAEA (2009) Integrity of reactor pressure vessels in nuclear powre plants: assessment of radiation embrittlement effects in reactor pressure vessel steels. IAEA nuclear energy series no NP-T-3.11. IAEA, Vienna

    Google Scholar 

  65. Sasikala G, Mathew MD, Bahnu Sanakara Rao K, Mannan SL (2000) Creep deformation and fracture behaviour of types 316 L(N) stainless steels and their weld metals. Met Mat Trans A 13A:1175–1185

    Google Scholar 

  66. Brinkman RC (1999) Elevated-temperature mechanical properties of an advanced type 316 stainless steel. ORNL/CP-101053 Oal Ridge National Laboratory

    Google Scholar 

  67. Shah VN, Majumdar S, Natesan K (2003) Review and assessments of codes and procedures for HTGR components. NUREG/CR-6816 ANL 02/36 USNRC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hoffelner, W. (2013). Design, Life-Time and Residual Life. In: Materials for Nuclear Plants. Springer, London. https://doi.org/10.1007/978-1-4471-2915-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2915-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2914-1

  • Online ISBN: 978-1-4471-2915-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics