Environmental Damage in Nuclear Plants

Chapter

Abstract

Structural components in nuclear plants are exposed to the operation environment, predominantly the coolant. Interactions with this environment and the surface of the components can lead to severe damage. Water, steam, liquid metals (sodium, lithium, lead, lead–bismuth), helium and molten salts are the most important environments for nuclear plants. In the first part the chapter provides an introduction into the expected damage mechanisms. Examples for corrosion damage for different plants are shown in the second part. In contrast to about fifty years experience with water/steam as coolants for the other environments only very limited field experience or even no experience exists. Therefore the plant related examples are often speculative and need to be validated by longer experience in the future.

Keywords

Titanium Nickel Dust Zirconium Lithium 

References

  1. 1.
    Corrosion (2011) In ASM materials handbook desk edition. http://products.asminternational.org/asm/servlet/Navigate. Accessed 30 Sep 2011
  2. 2.
    Heikinheimo L (2009) Materials for SCWR MATGEN-IV STOCKHOLM—2 Feb 2009. https://192.107.58.30/D19/Heikinheimo.pdf. Accessed 30 Sep 2011
  3. 3.
    Was G, Busby J, Andresen PL (2006) Effect of irradiation on stress-corrosion cracking and corrosion in light water reactors. In : Cramer SD, Covino BS Jr (eds) ASM handbook: corrosion: environments and industries, vol 13C. doi:  10.1361/asmhba0004147
  4. 4.
    Heilmaier H, Reppich B (1996) Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: a micromechanically based approach. Metall Mat Trans A 27:3861–3870CrossRefGoogle Scholar
  5. 5.
    Hoffelner W (1986) Creep dominated processes. In: Betz W et al. (eds) High temperature alloys for gas turbines and other applications 1986. Reidel Publication Comp, DordrechtGoogle Scholar
  6. 6.
    Revie I, Winston R (2008) Corrosion and corrosion control, 4th edn. Wiley, ISBN: 978-0-471-73279-2Google Scholar
  7. 7.
    Austen MI (1983) Quantitative understanding of corrosion fatigue crack growth behaviour: final report. In: Commission of European communities, technical steel research, Brussels EUR 8560Google Scholar
  8. 8.
    Gilman JD (1986) Application of a model for predicting corrosion fatigue crack growth in reactor pressure vessel steels in LWR environments. Predict Capab Environ Assist Crack ASME-PVP 99:1–16Google Scholar
  9. 9.
    Shoji T (1986) Quantitative prediction of environmentally assisted cracking based on crack tip strain rate. Predict Capab Environ Assist Crack ASME-PVP 99:127–142Google Scholar
  10. 10.
    Gabetta G (1987) The effect of frequency in environmental fatigue tests. Fatigue Fract Engng Mater Struct 10(5):373–383CrossRefGoogle Scholar
  11. 11.
    Schütze M, Quaddakkers WJ (1999) Cyclic oxidation of high temperature materials. In: European federation of corrosion series, vol 27. ISBN: 978 1 861251 00Google Scholar
  12. 12.
    NACE Resource Center (2011) http://events.nace.org/library/corrosion/AnodProtect/passivecurve.asp. Accessed 30 Sep 2011
  13. 13.
    Gorynin I, Timofeev B, Chernaenko T (2003) Material properties degradation assessment of the first generation WWER440 RPV after prolonged operation. In: Transactions of the 17th international conference on structural mechanics in reactor technology (SMiRT 17), Prague Czech Republic 17–22 Aug, paper #D02-4Google Scholar
  14. 14.
    U.S. Nuclear Regulatory Commission (2011) http://www.nrc.gov/reactors/operating/ops-experience/pressure-boundary-integrity.html. Accessed 30 Sep 2011
  15. 15.
    Staehle RW (2007) Anatomy of proactivity. In: International symposium on research for aging management of light water reactors and its future trend the 15th anniversary of institute of nuclear safety system inc (INSS), 22 and 23 Oct 2007, Fukui City JapanGoogle Scholar
  16. 16.
    U.S. Nuclear Regulatory Commission (2011) http://www.nrc.gov/reading-rm/doc-collections/gen-comm/bulletins/2004/bl200401.pdf. Accessed 30 Sep 2011
  17. 17.
    Sensitization of Austenites (2011) In: ASM materials handbook desk edition. http://products.asminternational.org/asm/servlet/Navigate. Accessed 30 Sep 2011
  18. 18.
    Kim SN, Kim CH, Youn BS, Yum HK (2007) Experiments on thermal stratification in inlet nozzle of steam generator. J Mech Sci Technol 21(4): 654–663. doi:  10.1007/BF03026970 Google Scholar
  19. 19.
    Kim JH, Roidt RM, Deardorff AF (1993) Thermal stratification and reactor piping integrity. Nucl Eng Des 139(1):83–95CrossRefGoogle Scholar
  20. 20.
    Bruemmer SM, Simonen EP, Scott PM, Andresen PL, Was GS, Nelson JL (1999) Radiation-induced material changes and susceptibility to intergranular failure of light water reactor core internals. J Nucl Mater 274:299–314CrossRefGoogle Scholar
  21. 21.
    Andresen PL, Ford FP, Murphy SM, Perks JM (1990) In: Cubicciotti D, Theus GJ (eds) Proceedings of fourth international symposium on environmental degradation of materials in nuclear power systems—water reactors. National Association of Corrosion Engineers, pp 1–83Google Scholar
  22. 22.
    Was GS, Andresen PL (1992) Irradiation-assisted stress-corrosion cracking in austenitic alloys. J Met 44(4):8–13Google Scholar
  23. 23.
    Scott PM (1994) A Review of irradiation assisted stress corrosion cracking. J Nucl Mater 211:101CrossRefGoogle Scholar
  24. 24.
    Ford FP, Andresen PL (1994) Corrosion in nuclear systems: environmentally assisted cracking in light water reactors. In: Marcus P, Ouder J (eds) Corrosion mechanisms. Marcel Dekker, pp 501–546Google Scholar
  25. 25.
    MacDonald DD, Yeh TK, MottaAT (1995) Corrosion paper no 403Google Scholar
  26. 26.
    Hettiarachchi S et al (1995) In: Proceedings of 7th international symposium on environmental degradation of materials in nuclear power systems—Water reactors, p 735Google Scholar
  27. 27.
    Hettiarachchi S et al (1997) In: Proceedings of 8th international symposium on environmental degradation of materials in nuclear power systems—Water reactors, p 535Google Scholar
  28. 28.
    Yeh TK, Lee MY, Tsai CH (2002) Intergranular stress corrosion cracking of type 304 stainless steels treated with inhibitive chemicals in simulated boiling water reactor environments. J Nucl Sci Technol 39(5):531–539CrossRefGoogle Scholar
  29. 29.
    Hettiarachchi S (2002) Worldwide BWR chemistry performance with noble metal chemical addition. Corrosion, 7–11 April 2002, Denver CO, NACE InternationalGoogle Scholar
  30. 30.
    Adamson R, Garzarolli F, Cox B, Strasser A, Rudling P (2007) Corrosion mechanisms in zirconium alloys. In: ZIRAT r2 special topic report corrosion mechanisms in zirconium alloys 2007. Advanced Nuclear Technology International Europe ABGoogle Scholar
  31. 31.
    Porter DL, Janney DE (2007) Chemical gradients in crud on boiling water reactor fuel elements. Idaho National Laboratory, PO Box 1625, Idaho Falls ID 83415-6188. http://www.inl.gov/technicalpublications/Documents/3772059.pdf. Accessed 10 Oct 2011
  32. 32.
    Huijbregts WMM, Letschert PJC (1987) Deposition of CRUD in BWR water on various steels exposed in the Dodewaard nuclear power plant. In: Kema scientific and technical reports, vol 4(2), pp 15–25. ISSN 0167-8590, ISBN 90-353-0037-8. Paper 33 JAF conference Tokio 1987. http://www.hbscc.nl/pdf/33%20Deposition%20of%20CRUD%20in%20BWR%20water.pdf. Accessed 10 Oct 2011
  33. 33.
    Delayed Hydride Cracking in Zirconium Alloys in Pressure Tube Nuclear Reactors (2004) Final report of a coordinated research project 1998–2002. IAEA-TECDOC-1410Google Scholar
  34. 34.
    Chua HC, Wua SK, Kuo RC (2008) Hydride reorientation in zircaloy-4 cladding. J Nucl Mater 373:319–327CrossRefGoogle Scholar
  35. 35.
    Furukawa T, Kato S, Yoshida E (2009) Compatibility of FBR materials with sodium. J Nucl Mater 392:249–254CrossRefGoogle Scholar
  36. 36.
    Raj B (2009) Materials science research for sodium cooled fast reactors. Bull Mater Sci 32(3):271–283CrossRefGoogle Scholar
  37. 37.
    Asayama T, Abe Y, Miyaji N, Koi M, Furukawa T, Yoshida E (2001) Evaluation procedures for irradiation effects and sodium environmental effects for the structural design of Japanese fast breeder reactors. J Press Vessel Technol 123:49–57CrossRefGoogle Scholar
  38. 38.
    Yoshida E, Kato S (2004) Sodium compatibility of ODS steel at elevated temperature. J Nucl Mater 329–333:1393–1397CrossRefGoogle Scholar
  39. 39.
    Chellapandi P, Chetal SC, Raj B (2009) Thermal striping limits for components of sodium cooled fast spectrum reactors. Nucl Eng Des 239:2754–2765CrossRefGoogle Scholar
  40. 40.
    Schuster H, Bauer R, Graham LW, Menken G, Thiele W (1981) Corrosion of high temperature alloys in the primary circuit gas of helium cooled high temperature reactors. In: Proceedings of 8th international congress on metallic corrosion mainz, vol 2, p 1601Google Scholar
  41. 41.
    Menken G, Graham LW, Nieder R, Schuster H, Thiele W (1983) Review of gas-metal interactions in HTR helium up to 950C. In: Proceedings of conference on gas cooled reactors today bristol, 20–24 Sept 1982, British Nuclier Energy Society, 1985Google Scholar
  42. 42.
    Bates HGA (1984) The corrosion behaviour of high temperature alloys during exposure times up to 10,000 h in prototype nuclear helium at 700–900 °C. Nucl Technol 66:415–428Google Scholar
  43. 43.
    Brenner KGE, Graham LW (1984) The development and application of a unified corrosion model for high temperature gas cooled reactor systems. Nucl Technol 66:404–414Google Scholar
  44. 44.
    Quadakkers WJ, Schuster H (1984) Thermodynamic and kinetic aspects of the corrosion of high temperature alloys in high-temperature gas cooled reactors. Nucl Technol 66:383–391Google Scholar
  45. 45.
    Ennis PJ, Mohr KP, Schuster H (1984) Effect of carburizing service environments on the mechanical properties of high temperature alloys. Nucl Technol 66: 263–270Google Scholar
  46. 46.
    Tanabe T, Sakai Y, Shikama T, Fujitsuka M, Yoshida H, Watanabe R (1984) Creep rupture properties of superalloys developed for nuclear steelmaking. Nucl Technol 66: 260–272Google Scholar
  47. 47.
    Tsuji H, Kondo T (1984) Low-cycle fatigue of heat resistant alloys in high-temperature gas-cooled reactor helium. Nucl Technol 66:347–353Google Scholar
  48. 48.
    Tucek K, Carlsson J, Wider H (2005) Comparison of sodium and lead cooled fast reactors regarding severe safety and economical issues. In: 13th international conference on nuclear engineering, Beijing, China, 16–20 May 2005, ICONE13-50397Google Scholar
  49. 49.
    Subbotin VI, Arnoldov MN, Kozlov FA, Shimkevich AL (2002) Liquid metal coolants for nuclear power. At Energ, vol 92, p 1Google Scholar
  50. 50.
    Gorse D, Auger T, Vogt JB, Serre I, Weisenburger A, Gessi A, Agostini P, Fazio C, Hojna A, Di Gabriele F, Van Den Bosch J, Coen G, Almazouzi A, Serrano M (2011) Influence of liquid lead and lead–bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems. J Nucl Mater 415:284–292Google Scholar
  51. 51.
    Smith CF (2011) The lead-cooled fast reactor: concepts for small and medium sized reactors for international deployment, LLNL-PRES-413792. https://smr.inl.gov/Login.aspx?requestedUrl=/Document.ashx?path=DOCS%2FSMR…smith.pdf. Accessed 12 Oct 2011
  52. 52.
    Cinotti L, Smith CF, Sekimoto H (2009) Lead cooled fast reactor (LFR): overview and perspectives. In: GIF symposium—Paris (France), 9–10 Sep 2009, pp 173–179Google Scholar
  53. 53.
    Müller G (2007) Pb and LBE corrosion protection at elevated temperatures. http://www.oecd-nea.org/science/reports/2007/pdf/chapter9.pdf. Accessed 12 Oct 2011
  54. 54.
    Overview of supercritical water oxidation technology. http://www.turbosynthesis.com/summitresearch/sumscw1.htm. Accessed 3 Nov 2011
  55. 55.
    General Atomics, supercritical water oxidation. www.ga.com/atg/APS/scwo/index.php
  56. 56.
    Was GS, Teysseyre S (2005) Challenges and recent progress in stress corrosion cracking of alloys for supercritical water reactor core components. In: Allen TR, King PJ, Nelson L (eds) Proceedings of the 12th international conference on environmental degradation of materials in nuclear power system—Water reactors. TMS the Minerals, Metals and Materials SocietyGoogle Scholar
  57. 57.
    Luo X, Tang R, Long C, Miao Z, Peng Q, Li C (2007) Corrosion behaviour of austenitic and ferritic steels in supercritical water. Nucl Eng Technol 40(2):144–157Google Scholar
  58. 58.
    Guzonas D (2009) SCWR materials and chemistry status of ongoing reasearch. In: GIF symposium, Paris (France), 9–10 Sept 2009, pp 163–170Google Scholar
  59. 59.
    Was GS, Ampornrat P, Gupta G, Teysseyre S, West EA, Allen TR, Sridharan K, Tan L, Chen Y, Ren X, Pister C (2007) Corrosion and stress corrosion cracking in supercritical water. J Nucl Materials 371: 176Google Scholar
  60. 60.
    Heikinheimo L, Guzonas D, Fazio C (2009) Generation IV materials and chemistry research–common issues with the SCWR concept. In: 4th international symposium on supercritical water-cooled reactors. Heidelberg Germany, 8–11 March 2009Google Scholar
  61. 61.
    Allen TR, Was GS (2007) Novel techniques to mitigate corrosion and stress corrosion cracking in supercritical water. Corrosion 2007, 11–15 March, Nashville Tennessee NACE 07RTS9Google Scholar
  62. 62.
    Renault C, Hron M, R. Konings R, Holcomb DE (2009) The molten salt reactor (MSR) in generation IV: overview and perspectives. In: GIF Symposium, Paris (France)—9–10 Sep 2009, pp 191–200Google Scholar
  63. 63.
    DeVan JH, Evans RB (1962) Corrosion behaviour of reactor materials in fluoride salt mixtures. ORLN-TM-328Google Scholar
  64. 64.
    Olson LC (2009) Materials corrosion in molten LiF-NaF-KF eutectic salt. Doctoral Thesis, University of Wisconsin-MadisonGoogle Scholar
  65. 65.
    Sabharwall P, Ebner M, Sohal M, Sharpe P, Anderson M, Sridharan K, Ambrosek J, Olson L, Brooks P (2010) Molten salts for high temperature reactors: University of Wisconsin molten salt corrosion and flow loop experiments—Issues identified and path forward. INL/EXT-10-18090Google Scholar
  66. 66.
    Delpech S, Merle-Lucotte E, Auger T, Doligez X, Heuer D, Picard G (2009) MSFR: Materials issues and the effect of chemistry control. In: GIF symposium—Paris (France), 9–10 Sep 2009, pp 201–208Google Scholar
  67. 67.
    Tiearnay TC, Grant NJ (1982) Metallurgical transactions, vol 13A, p 1827Google Scholar
  68. 68.
    Konys J, Krauss W, Holstein N (2011) Aluminum-based barrier development for nuclear fusion applications. Corrosion 67(2):026002-1–026002-6Google Scholar
  69. 69.
    Konys J, Krauss W, Novotny J, Steiner H, Voss Z, Wedemeyer O (2009) Compatibility behavior of EUROFER steel in flowing Pb-17Li. J Nucl Mater 386–388: 678Google Scholar

Copyright information

© Springer-Verlag London Limited 2013

Authors and Affiliations

  1. 1.OberrohrdorfSwitzerland

Personalised recommendations