Skip to main content

Components and Its Production

  • Chapter
  • First Online:

Abstract

Materials are used for components of plants. According to its function they can differ considerably in size and complexity. The sizes range from heavy and thick-walled (e.g. pressure vessel) to wall sizes of below one millimeter (claddings and compact heat exchangers). For protection against environmental attack components can have coatings on the surface. The production of components needs semi-finished goods, welding and shaping which requires different techniques depending on kind of component. In the first part of the chapter the major components used in nuclear plants will be introduced. The second part will deal with production technologies. Melting, forging, bonding but also powder metallurgy and layered structures will be covered for metallic parts. Production methods for graphite and structural ceramics will also be briefly introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. USNRC (2012) http://www.nrc.gov/images/reading-rm/photo-gallery/20071114-026.jpg. Accessed 4 July 2012

  2. Park JY (2012) Nuclear power reactor technology––major components design and manufacturing. http://www.kntc.re.kr/openlec/nuc/NPRT/module2/module2_6/2_6.htm. Accessed 4 July 2012

  3. Buongiorno J, MacDonald PE (2003) Supercritical water reactor (SCWR). In: Progress report for the FY-03 generation-IV R&D activities for the development of the SCWR in the U.S. INEEL/EXT-03-01210

    Google Scholar 

  4. Sato I, Suzuki K (1997) Manufacturing and reactor pressure vessel material properties of forgings for the of the high temperature engineering test reactor. Nucl Eng Des 171:45–56

    Article  Google Scholar 

  5. http://www.cameco.com/uranium_101/uranium_science/nuclear_fuel/. Accessed 13 Oct 2011

  6. Different options for GFR fuel, GenIV GFR (unpublished)

    Google Scholar 

  7. Peterson F (2008) Liquid-salt cooled advanced high temperature reactors (AHTR). In: GoNERI seminar. https://smr.inl.gov/Document.ashx?path=DOCS%2FMSR-US%2FPB-AHTR_Review_Slides_10_7_09.pdf. Accessed 13 Oct 2011

  8. Snead LL, Windes W, Klett J, Katoh Y (2005) Ceramic composites for next step nuclear power systems. Presented at the Euromat, Prague, 4–8 Sept 2005

    Google Scholar 

  9. http://www.nucleartourist.com/type/rbmk.htm. Accessed 13 Oct 2011

  10. Wickham T (2011) E-mail communication to members of the IAEA GCR working group

    Google Scholar 

  11. Wikipedia Advanced Gas-Cooled Reactor (2012) http://en.wikipedia.org/wiki/Advanced_gas-cooled_reactor. Accessed 4 July 2012

  12. Next Generation Nuclear Plant Pre-Conceptual Design (2007) Report INL/EXT-07-12967 Revision 1

    Google Scholar 

  13. ASME/DOE (2007) Gen IV Task 7. Part 1 Review of current experience on intermediate heat exchanger (IHX) AREVA. http://www.osti.gov/bridge/servlets/purl/974284-dscxT2/974284.pdf. Accessed 13 Oct 2011

  14. Stamped Heat Exchanger (2012) http://www.alaquainc.com/Heat_Exchangers.aspx. Accessed 4 July 2012

  15. Raule G, Bauer R (2011) Properties of materials for the high temperature helium turbine unde mechanical and thermal loading. IAEA. http://www.iaea.org/inisnkm/nkm/aws/htgr/fulltext/iwggcr4_16.pdf. Accessed 13 Oct 2011

  16. Matsuo E, Tsutsumi M, Ogata K (1995) Conceptual design of helium gas turbine for MHTGR-GT. Technical committee meeting on design and development of gas cooled reactors with closed cycle gas turbines. Beijing China) 30 Oct - 2 Nov 1995. International Atomic Energy Agency, Vienna (Austria) IAEA-TECDOC 899: 95-109

    Google Scholar 

  17. Séran JL, Billot P, Burlet H, Couturier R, Robin JC, Bonal JP, Gosmain L, Riou B (2004) Metallic and graphite materials for out-of-core and in-core components of the VHTR: first results of the CEA R&D program. In: 2nd international topical meeting on high temperature reactor technology, Beijing, paper E15

    Google Scholar 

  18. No HC, Kim JH, Kim HM (2007) A review of helium gas turbine technology for high-temperature gas-cooled reactors. Nucl Eng Technol 39(1):21–30

    Article  Google Scholar 

  19. A Conceptual Study of Commercial Fusion Power Plants (2005) Final report of the European fusion power plant conceptual study (PPCS). EFDA-RP-RE-5.0

    Google Scholar 

  20. Baluc N (2010) Materials for fusion applications. Master nuclear engineering lecture notes ETHZ/EPFL, Switzerland

    Google Scholar 

  21. Barabash V, Peacock A, Fabritsiev S, Kalinin G, Zinkle S, Rowcliffe A, Rensman JW, Tavassoli AA, Marmy P, Karditsas PJ, Gillemot F, Akibak M (2007) Materials challenges for ITER––current status and future activities. J Nucl Mater 367–370:21–32

    Article  Google Scholar 

  22. Kusuhashi M, Tanaka Y, Nakamura T, Sasaki T, Koyama Y, Tsukada H (2009) Manufacuring of low neutron irradiation embrittlement sensitivity core region shells for nuclear reactor pressure vessels. E-J Adv Maintenance 1:67–98

    Google Scholar 

  23. Tanaka Y, Ishiguro T, Iwadate T (1998) Development of high quality large-scale forgings for energy service. The Japan Steel Works Ltd. Tech Rev 54:1–19

    Google Scholar 

  24. Ikemi T (1966) Tap degassing. The Japan Steel Works Ltd. Tech Rev 21:3–11

    Google Scholar 

  25. Takenouchi T (1992) Development of production technologies for high quality large forging ingots. The Japan Steel Works Ltd. Tech Rev 46:108–127

    Google Scholar 

  26. Danner GE, Taylor G (1960) Vacuum deoxidation of steel for large ingots. In: Vacuum metallurgy conference, New York University, New York

    Google Scholar 

  27. Suzuki K (1981) Macrosegregation in large steel ingots. The Japan Steel Works Ltd. Tech Rev 40:1–11

    Google Scholar 

  28. Quade U, Müller W (2005) Recycling of radioactively contaminated scrap from the nuclear cycle and spin-off for other application. Rev Metall Madrid vol Extr:23–28. http://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/download/980/1005. Accessed 4 July 2012

  29. ALD Vacuum Technologies (2012) http://web.ald-vt.de/cms/?id=63. Accessed 4 July 2012

  30. Eschenbach R, Hoffelner W (1992) Advances in plasma melting technology. Key Eng Mater 77–78:205–216

    Article  Google Scholar 

  31. Weigel H, Roeder KH, Hoffelner W (2000) Plasmarc––vitrification of radioactive waste. In: WM’00 conference, Tucson AZ conference proceedings

    Google Scholar 

  32. Zhang Y, Zhou L, Sun J, Han M, Reiter G, Flinspach J, Yang J, Zhao Y (2008) An investigation on electron beam cold hearth melting of Ti64 alloy. Rare Metal Mater Eng 37(11):1973–1977

    Article  Google Scholar 

  33. Forging Industry Association, How Are Forgings Produced? (2010) http://www.forging.org/facts/wwhy6.cfm. Accessed 13 Oct 2011

  34. Nazmy M, Staubli M (1991) U.S. Patent 5 207 982 and European Patent 45505 B1

    Google Scholar 

  35. German RM (1984) Powder metallurgy science, 2nd edn. In: Metal powder industries federation, New Jersey

    Google Scholar 

  36. Kavithaa S, Subramanian R, Angelo PC (2010) Yttria dispersed 9Cr martensitic steel synthesized by mechanical alloying––hot isostatic pressing. Trans Indian Inst Met 63(1):67–74

    Article  Google Scholar 

  37. Ukai S, Fujiwara M (2002) Dispersion-strengthened alloys perspective of ODS alloys application in nuclear environments. J Nucl Mater 307–311:749–757

    Article  Google Scholar 

  38. Dubiezlegoff S, Couturier R, Guetaz L, Burlet H (2004) Effect of the microstructure on the creep behavior of PM Udimet 720 superalloy-experiments and modeling. Mater Sci Eng, A 387–389(18–19):599–603

    Google Scholar 

  39. Burchell TD (1999) Carbon materials for advanced technologies. Elsevier, Amsterdam. ISBN:0080426832/0-08-042683-2

    Google Scholar 

  40. Ball DR (2008) Graphite for high temperature gas-cooled nuclear reactors. In: ASME standards technology LLC. ISBN:0-7918-3176-0

    Google Scholar 

  41. Schüller HJ, Hagn L, Woitschek A (1974) Der Maschinenschaden 47:1–13

    Google Scholar 

  42. Type IV cracking in modified 9Cr 1Mo steel weld joint. Science 11. http://www.igcar.ernet.in/benchmark/science/11-sci.pdf

  43. Wikipedia Friction Stirr Welding. http://en.wikipedia.org/wiki/Friction_stir_welding

  44. Olson LC (2009) Materials corrosion in molten lithium fluoride–sodium fluoride–potassium fluoride eutectic salt. PhD Thesis, The University of Wisconsin––Madison AAT 3400030

    Google Scholar 

  45. Marlowe WCD, Adamson MO, Wisner SB, Rand RA Amijo JS (1996) Zircaloy-2 lined zirconium barrier fuel cladding. In: Bradley ER, Sabol GP (eds) ASTM STP 1295 American society for testing and materials, pp 676–694

    Google Scholar 

  46. Aiello A, Benamati G, Fazio C (2001) Hydrogen permeation barrier development and characterization. In: Nuclear science nuclear production of hydrogen. NEA OECD, Paris, pp 145–157

    Google Scholar 

  47. NRC Pressure Vessel (2012) http://rpmedia.ask.com/ts?u=/wikipedia/commons/7/7d/Reactorvessel.gif. Accessed 4 July 2012

  48. Charit I, Murty KL (2007) Structural materials for next generation nuclear reactors. In: Second ACE Workshop, Boise

    Google Scholar 

  49. Fast Reactor Plant Systems (2006) Feasibility study on commercialized fast reactor cycle systems technical study report of phase II. JAEA-Research 2006-042: 650. Figure 2.2.2–62

    Google Scholar 

  50. http://canteach.candu.org/image_index.html. Accessed 13 Oct 2011

  51. http://ehome.kaeri.re.kr/snsd/eng/organization/organization1-1.htm. Accessed 13 Oct 2011

  52. http://www.itaps.org/applications/gnep.html. Accessed 13 Oct 2011

  53. Snead L (2009) ORNL private GENIV-information

    Google Scholar 

  54. Marsden BJ (2012) Reactor core design principles. AGR and HTR. http://web.up.ac.za/sitefiles/file/44/2063/Nuclear_Graphite_Course/B%20-%20Graphite%20Core%20Design%20AGR%20and%20Others.pdf. Accessed 4 July 2012

  55. Zhang Z, Liu J, He S, Zhang Z, Yu S (2002) Structural design of ceramic internals of HTR-10. Nucl Eng Des 218(1–3):123–136

    Article  Google Scholar 

  56. USNRC on Wikipedia (2012) http://en.wikipedia.org/wiki/Steam_generator_%28nuclear_power%29. Accessed 4 July 2012

  57. http://www.mhi.co.jp/en/nuclear/euapwr/components03.html. Accessed 2 Nov 2011

  58. Takeda T, Tachibana Y, Nagakawa S (2002) Structural integrity assessments of intermediate heat exchanger in the HTTR. JAERI-Tech 2002-091

    Google Scholar 

  59. http://www.heatric.com/nuclear_product_development.html. Accessed 13 Oct 2011

  60. http://accessscience.com/content/Nuclear-reactor-alternative-designs/YB011150. Accessed 13 Oct 2011

  61. Ukai S, Kaito T, Seki M, Mayorshin AA, Shishalo OV (2005) Oxide dispersion strengthened (ODS) fuel pins fabrication for BOR-60 irradiation test. J Nucl Sci Technol 42(1):109–122

    Article  Google Scholar 

  62. Hoffelner W, Bratton R, Mehta H, Hasegawa K, Morton KD (2011) New generation reactors. In: Rao KR (ed) Energy and power generation handbook-established and emerging technologies, ASME, New York, pp 23.1–23.36

    Google Scholar 

  63. Wikipedia Submerged Arc Welding. http://en.wikipedia.org/wiki/Submerged_arc_welding. Accessed 3 Nov 2011

  64. Wikipedia Gas Tungsten Arc Welding. http://en.wikipedia.org/wiki/Gas_tungsten_arc_welding. Accessed 3 Nov 2011

  65. Chan W, McQueen R, Prince J, Sidey D (1991) Metallurgical experiences with high temperature piping in ontario hydro ASME PVP 22. Service experience in operating plants, New York

    Google Scholar 

  66. Cladding RPV. http://www.kntc.re.kr/openlec/nuc/NPRT/module2/module2_6/2_6.htm

  67. Buckthorpe D, Fazio C, Heikinheimo L, Hoffelner W, van der Laan J, Nilsson KF, Schuster F (2011) (still unpublished)

    Google Scholar 

  68. http://www.world-nuclear.org/info/inf122_heavy_manufacturing_of_power_plants.html. Accessed 13 Oct 2011

  69. Katoh Y, Wilson DF, Forsberg CW (2007) Assessment of silicon carbide composites for advanced salt-cooled reactors. ORNL/TM-2007/168

    Google Scholar 

  70. USNRC (2012) http://www.nrc.gov/reading-rm/basic-ref/teachers/reactor-fuel-assembly.html. Accessed 4 July 2012

  71. http://www.ne.doe.gov/geniv/neGenIV3.html. Accessed 13 Oct 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hoffelner, W. (2013). Components and Its Production. In: Materials for Nuclear Plants. Springer, London. https://doi.org/10.1007/978-1-4471-2915-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2915-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2914-1

  • Online ISBN: 978-1-4471-2915-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics